Evaluation of fish meal freshness using a metal‐oxide semiconductor electronic nose combined with the long short‐term memory feature extraction method

电子鼻 均方误差 支持向量机 模式识别(心理学) 人工智能 数学 线性回归 回归分析 特征提取 偏最小二乘回归 统计 计算机科学
作者
Pei Li,Zhaopeng Li,Yangting Hu,Zhiyou Niu,Zhenhe Wang,Hua Zhou,Xia Sun
出处
期刊:Journal of Food Science [Wiley]
卷期号:89 (8): 5016-5030
标识
DOI:10.1111/1750-3841.17231
摘要

Abstract To improve the classification and regression performance of the total volatile basic nitrogen (TVB‐N) and acid value (AV) of different freshness fish meal samples detected by a metal‐oxide semiconductor electronic nose (MOS e‐nose), 402 original features, 62 manually extracted features, manually extracted and selected features by the RFRFE method, and the features extracted by the long short‐term memory (LSTM) network were used as inputs to identify the freshness. The classification performance of the freshness grades and the estimation performance of the TVB‐N and AV values of fish meal with different freshness were compared. According to the sensor response curve, preprocessing and feature extraction steps were first applied to the original data. Then, five classification algorithms and four regression algorithms were used for modeling. The results showed that a total of 30 features were extracted using the LSTM network, and the number of extracted features was significantly reduced. In the classification, the highest accuracy rate of 95.4% was obtained using the support vector machine method. In the regression, the least squares support vector regression method obtained the best root mean square error (RMSE). The coefficient of determination ( R 2 ), RMSE, and relative standard deviation (RSD) between the predicted value of TVBN and the actual value were 0.963, 11.01, and 7.9%, respectively. The R 2 , RMSE, and RSD between the predicted value of AV and the actual value were 0.972, 0.170, and 6.05%, respectively. The LSTM feature extraction method provided a new method and reference for feature extraction using an E‐nose to identify other animal‐derived material samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smiling_ran发布了新的文献求助10
1秒前
偏翩完成签到 ,获得积分10
3秒前
3秒前
guangyu完成签到,获得积分10
5秒前
小脸红扑扑完成签到 ,获得积分10
6秒前
怡然的白开水完成签到 ,获得积分10
6秒前
2012csc完成签到 ,获得积分0
7秒前
橘止发布了新的文献求助30
7秒前
Silence完成签到 ,获得积分10
9秒前
为你等候完成签到,获得积分10
13秒前
拾壹完成签到,获得积分10
14秒前
西柚柠檬完成签到 ,获得积分10
17秒前
一天一个苹果儿完成签到 ,获得积分10
18秒前
离子电池完成签到,获得积分10
21秒前
21秒前
魔芋爽完成签到,获得积分10
21秒前
CAST1347完成签到,获得积分10
23秒前
luckweb完成签到,获得积分10
23秒前
妍宝贝完成签到 ,获得积分10
24秒前
001完成签到,获得积分10
25秒前
luckweb发布了新的文献求助10
27秒前
杭紫雪完成签到,获得积分10
28秒前
Jess2147完成签到,获得积分10
28秒前
30秒前
鲤鱼越越完成签到 ,获得积分10
32秒前
奥丁蒂法完成签到,获得积分20
35秒前
yu完成签到,获得积分10
35秒前
affff完成签到 ,获得积分10
36秒前
银子吃好的完成签到,获得积分10
38秒前
刘涵完成签到 ,获得积分10
39秒前
觅柔完成签到,获得积分10
40秒前
一区种子选手完成签到,获得积分10
42秒前
猪仔5号完成签到 ,获得积分10
43秒前
爆米花应助ljzfj采纳,获得10
44秒前
45秒前
橘止发布了新的文献求助10
45秒前
Jiangx完成签到 ,获得积分10
45秒前
Never stall完成签到 ,获得积分10
49秒前
飞兰完成签到,获得积分10
49秒前
yydsyyd完成签到 ,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758260
求助须知:如何正确求助?哪些是违规求助? 3301134
关于积分的说明 10116546
捐赠科研通 3015623
什么是DOI,文献DOI怎么找? 1656219
邀请新用户注册赠送积分活动 790250
科研通“疑难数据库(出版商)”最低求助积分说明 753766