Few-shot fine-grained fish species classification via sandwich attention CovaMNet

计算机科学 人工智能 公制(单位) 特征(语言学) 模式识别(心理学) 任务(项目管理) 样品(材料) 弹丸 光学(聚焦) 机器学习 特征提取 渔业 工程类 哲学 运营管理 物理 有机化学 化学 光学 系统工程 生物 色谱法 语言学
作者
Jiping Zhai,Lu Han,Ying Xiao,Mai Yan,Yueyue Wang,Xiaodong Wang
出处
期刊:Frontiers in Marine Science [Frontiers Media SA]
卷期号:10 被引量:9
标识
DOI:10.3389/fmars.2023.1149186
摘要

The task of accurately classifying marine fish species is of great importance to marine ecosystem investigations, but previously used methods were extremely labor-intensive. Computer vision approaches have the advantages of being long-term, non-destructive, non-contact and low-cost, making them ideal for this task. Due to the unique nature of the marine environment, marine fish data is difficult to collect and often of poor quality, and learning how to identify additional categories from a small sample of images is a very difficult task, meanwhile fish classification is also a fine-grained problem. Most of the existing solutions dealing with few-shot classification mainly focus on the improvement of the metric-based approaches. For few-shot classification tasks, the features extracted by CNN are sufficient for the metric-based model to make a decision, while for few-shot fine-grained classification with small inter-class differences, the CNN features might be insufficient and feature enhancement is essential. This paper proposes a novel attention network named Sandwich Attention Covariance Metric Network (SACovaMNet), which adds a new sandwich-shaped attention module to the CovaMNet based on metric learning, strengthening the CNN’s ability to perform feature extraction on few-shot fine-grained fish images in a more detailed and comprehensive manner. This new model can not only capture the classification objects from the global perspective, but also extract the local subtle differences. By solving the problem of feature enhancement, this new model can accurately classify few-shot fine-grained marine fish images. Experiments demonstrate that this method outperforms state-of-the-art solutions on few-shot fine-grained fish species classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助秋子采纳,获得10
刚刚
跳跃凡桃发布了新的文献求助10
刚刚
1秒前
上官若男应助Guo采纳,获得10
1秒前
桐桐应助落木采纳,获得10
1秒前
Fawn完成签到 ,获得积分10
2秒前
暮云发布了新的文献求助10
3秒前
yirenli完成签到,获得积分10
3秒前
内向的乐驹完成签到,获得积分10
3秒前
朴素幼晴完成签到,获得积分10
3秒前
3W完成签到,获得积分10
4秒前
4秒前
可爱的函函应助风起人散采纳,获得10
4秒前
科研通AI5应助香蕉初瑶采纳,获得10
5秒前
5秒前
斯文败类应助snow采纳,获得10
5秒前
uu完成签到,获得积分20
6秒前
复杂含灵完成签到,获得积分10
8秒前
kevin发布了新的文献求助20
8秒前
Lawrence发布了新的文献求助10
9秒前
zxldylan完成签到,获得积分10
9秒前
曦子曦子发布了新的文献求助10
9秒前
我是老大应助linyalala采纳,获得10
9秒前
科研通AI5应助善良的一凤采纳,获得30
9秒前
11秒前
11秒前
12秒前
12秒前
13秒前
沉静的小熊猫完成签到,获得积分10
13秒前
ty7889完成签到,获得积分10
13秒前
13秒前
yatuitui发布了新的文献求助30
14秒前
14秒前
淡然的寻冬完成签到 ,获得积分10
14秒前
15秒前
脑洞疼应助结实大白采纳,获得10
15秒前
15秒前
15秒前
大个应助uu采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564154
求助须知:如何正确求助?哪些是违规求助? 3137367
关于积分的说明 9422052
捐赠科研通 2837751
什么是DOI,文献DOI怎么找? 1560082
邀请新用户注册赠送积分活动 729261
科研通“疑难数据库(出版商)”最低求助积分说明 717280