Fully neuromorphic vision and control for autonomous drone flight

神经形态工程学 计算机科学 人工智能 尖峰神经网络 机器人学 人工神经网络 机器人 无人机 计算机视觉 生物 遗传学
作者
Federico Paredes-Vallés,Jesse Hagenaars,Julien Dupeyroux,Stein Stroobants,Yingfu Xu,Guido de Croon
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2303.08778
摘要

Biological sensing and processing is asynchronous and sparse, leading to low-latency and energy-efficient perception and action. In robotics, neuromorphic hardware for event-based vision and spiking neural networks promises to exhibit similar characteristics. However, robotic implementations have been limited to basic tasks with low-dimensional sensory inputs and motor actions due to the restricted network size in current embedded neuromorphic processors and the difficulties of training spiking neural networks. Here, we present the first fully neuromorphic vision-to-control pipeline for controlling a freely flying drone. Specifically, we train a spiking neural network that accepts high-dimensional raw event-based camera data and outputs low-level control actions for performing autonomous vision-based flight. The vision part of the network, consisting of five layers and 28.8k neurons, maps incoming raw events to ego-motion estimates and is trained with self-supervised learning on real event data. The control part consists of a single decoding layer and is learned with an evolutionary algorithm in a drone simulator. Robotic experiments show a successful sim-to-real transfer of the fully learned neuromorphic pipeline. The drone can accurately follow different ego-motion setpoints, allowing for hovering, landing, and maneuvering sideways$\unicode{x2014}$even while yawing at the same time. The neuromorphic pipeline runs on board on Intel's Loihi neuromorphic processor with an execution frequency of 200 Hz, spending only 27 $\unicode{x00b5}$J per inference. These results illustrate the potential of neuromorphic sensing and processing for enabling smaller, more intelligent robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rush发布了新的文献求助10
刚刚
王一一完成签到,获得积分10
1秒前
科研通AI2S应助tjfwg采纳,获得10
2秒前
2秒前
4秒前
2323142578发布了新的文献求助10
5秒前
洁净的天佑关注了科研通微信公众号
6秒前
dear完成签到,获得积分10
8秒前
9秒前
ZHANG完成签到,获得积分10
10秒前
10秒前
踏实天空应助rmrb采纳,获得10
11秒前
小镇的废物完成签到,获得积分10
12秒前
14秒前
暮光之城完成签到,获得积分10
14秒前
小王发布了新的文献求助50
14秒前
脑洞疼应助Crane采纳,获得10
16秒前
依依完成签到,获得积分10
16秒前
橘络完成签到 ,获得积分10
16秒前
李爱国应助难摧采纳,获得10
17秒前
17秒前
无花果应助黑山路老军医采纳,获得10
18秒前
dm发布了新的文献求助10
18秒前
threewei发布了新的文献求助10
19秒前
19秒前
19秒前
老刘爱吃饭完成签到,获得积分10
20秒前
20秒前
黑山路老军医完成签到,获得积分20
21秒前
linyingo完成签到,获得积分10
22秒前
22秒前
苏夏发布了新的文献求助10
23秒前
24秒前
25秒前
月亮是甜的完成签到 ,获得积分10
25秒前
杨杨发布了新的文献求助10
25秒前
秋水黎枫发布了新的文献求助10
26秒前
28秒前
满姣发布了新的文献求助10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138914
求助须知:如何正确求助?哪些是违规求助? 2789858
关于积分的说明 7792896
捐赠科研通 2446244
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079