工具箱
计算机科学
人工神经网络
管道(软件)
接口(物质)
人工智能
深度学习
计算机体系结构
机器学习
程序设计语言
并行计算
最大气泡压力法
气泡
作者
Kristof T. Schütt,Stefaan S. P. Hessmann,Niklas W. A. Gebauer,Jonas Lederer,Michael Gastegger
摘要
SchNetPack is a versatile neural network toolbox that addresses both the requirements of method development and the application of atomistic machine learning. Version 2.0 comes with an improved data pipeline, modules for equivariant neural networks, and a PyTorch implementation of molecular dynamics. An optional integration with PyTorch Lightning and the Hydra configuration framework powers a flexible command-line interface. This makes SchNetPack 2.0 easily extendable with a custom code and ready for complex training tasks, such as the generation of 3D molecular structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI