纳滤
膜
界面聚合
海水淡化
化学工程
化学
聚酰胺
聚合
膜技术
色谱法
吸附
水溶液
聚合物
高分子化学
有机化学
单体
工程类
生物化学
作者
Cunxian Lai,Xuewu Zhu,Jinyu Li,Weiwei Zhou,Jingtao Xu,Junwen Ding,Jialin Song,Daoji Wu,Heng Liang,Xiaoxiang Cheng
出处
期刊:Desalination
[Elsevier]
日期:2022-10-07
卷期号:544: 116148-116148
被引量:35
标识
DOI:10.1016/j.desal.2022.116148
摘要
Highly permeable nanofiltration (NF) membranes with efficient natural organic matter (NOM) removal yet preserving essential minerals are of great significance for purifying ground water. In this work, a novel pH-regulated interfacial polymerization (PRIP) strategy was proposed to fabricate ultra-low pressure NF membranes. This strategy was achieved by changing the aqueous solution pH (5, 7, 9, and 11) during IP process. The effects of pH-regulated processes on the structure, chargeability, and physicochemical properties of NF membranes were systematically investigated. Tailored NF membranes under acidic conditions (TFC-pH 5) achieved the ultrahigh permeability of 42.9 L m−2 h−1 bar−1 and 83.3 % moderate rejection of Na2SO4. For the NF membranes prepared under alkaline conditions (TFC-pH 11), the sieving capacity was obviously improved with fewer defects, and 99.4 % rejection of Na2SO4 was observed. In addition, the purification performance of NF membranes in ground water treatment was further studied. Modified NF membranes showed significant removal of NOM and retain moderate amounts of mineral salts. Finally, the mechanism of the pH-regulated influence on the polyamide active layer formation process was proposed. This study provides a feasible and facile design idea for ultralow-pressure NF membranes in purifying ground water.
科研通智能强力驱动
Strongly Powered by AbleSci AI