Machine Learning Using Neural Networks for Metabolomic Pathway Analyses

人工智能 机器学习 计算机科学 人工神经网络 代谢途径 代谢组学 深度学习 朴素贝叶斯分类器 小桶 药物发现 集合(抽象数据类型) 计算生物学 生物信息学 化学 支持向量机 生物 生物化学 基因 基因表达 转录组 程序设计语言
作者
Rosalin Bonetta,Jean-Paul Ebejer,Gianluca Valentino
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 395-415 被引量:3
标识
DOI:10.1007/978-1-0716-2617-7_17
摘要

Elucidating the mechanisms of metabolic pathways helps us understand the cascade of enzyme-catalyzed reactions that lead to the conversion of substances into final products. This has implications for predicting how newly synthesized compounds will affect a person's metabolism and, hence, the development of novel treatments to improve one's health. The study of metabolomic pathways, together with protein engineering, may also aid in the extraction, at a scale, of natural products to be used as drugs and drug precursors. Several approaches have been used to correlate protein annotations to metabolic pathways in order to derive pathways directly related to specific organisms. These could range from association rule-mining techniques to machine learning methods such as decision trees, naïve Bayes, logistic regression, and ensemble methods.In this chapter, we will be reviewing the use of machine learning for metabolic pathway analyses, with a step-by-step focus on the use of deep learning to predict the association of compounds (metabolites) to their respective metabolomic pathway classes. This prediction could help explain interactions of small molecules in organisms. Inspired by the work of Baranwal et al. (2019), we demonstrate how to build and train a deep learning neural network model to perform a multi-label prediction. We considered two different types of fingerprints as features (inputs to the model). The output of the model is the set of metabolic pathway classes (from the KEGG dataset) in which the input molecule participates. We will walk through the various steps of this process, including data collection, feature engineering, model selection, training, and evaluation. This model-building and evaluation process may be easily transferred to other domains of interest. All the source code used in this chapter is made publicly available at https://github.com/jp-um/machine_learning_for_metabolomic_pathway_analyses .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只大憨憨猫完成签到,获得积分10
刚刚
1秒前
香蕉觅云应助吹梦西洲采纳,获得10
1秒前
lf发布了新的文献求助10
1秒前
苽峰完成签到,获得积分10
2秒前
阿呷惹完成签到,获得积分10
2秒前
Ruadong发布了新的文献求助10
3秒前
CodeCraft应助神帅酷哥采纳,获得30
4秒前
甜美的成败完成签到,获得积分10
5秒前
Keyl发布了新的文献求助10
6秒前
荼蘼完成签到,获得积分10
6秒前
南瓜完成签到,获得积分10
10秒前
烟花应助ceeray23采纳,获得20
11秒前
雏菊完成签到,获得积分10
11秒前
酷酷的如波完成签到 ,获得积分10
13秒前
bkagyin应助SSDlk采纳,获得10
13秒前
14秒前
刘浩然发布了新的文献求助10
16秒前
三心完成签到,获得积分10
19秒前
wang完成签到,获得积分10
19秒前
20秒前
20秒前
qiaorankongling完成签到 ,获得积分10
21秒前
math-naive完成签到,获得积分10
22秒前
科研通AI6应助三心采纳,获得10
23秒前
热心市民完成签到 ,获得积分10
25秒前
乖小俏发布了新的文献求助10
26秒前
yuhangli完成签到,获得积分10
29秒前
29秒前
Roy发布了新的文献求助10
30秒前
孙晓燕完成签到 ,获得积分10
31秒前
zhi完成签到,获得积分10
31秒前
五月完成签到 ,获得积分10
33秒前
37秒前
NNi完成签到,获得积分10
39秒前
CodeCraft应助刘浩然采纳,获得10
39秒前
40秒前
41秒前
流飒完成签到,获得积分10
42秒前
无辜群众发布了新的文献求助10
43秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378663
求助须知:如何正确求助?哪些是违规求助? 4503041
关于积分的说明 14014978
捐赠科研通 4411712
什么是DOI,文献DOI怎么找? 2423469
邀请新用户注册赠送积分活动 1416373
关于科研通互助平台的介绍 1393834