Machine Learning Using Neural Networks for Metabolomic Pathway Analyses

人工智能 机器学习 计算机科学 人工神经网络 代谢途径 代谢组学 深度学习 朴素贝叶斯分类器 小桶 药物发现 集合(抽象数据类型) 计算生物学 生物信息学 化学 支持向量机 生物 生物化学 基因 基因表达 转录组 程序设计语言
作者
Rosalin Bonetta,Jean-Paul Ebejer,Gianluca Valentino
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 395-415 被引量:3
标识
DOI:10.1007/978-1-0716-2617-7_17
摘要

Elucidating the mechanisms of metabolic pathways helps us understand the cascade of enzyme-catalyzed reactions that lead to the conversion of substances into final products. This has implications for predicting how newly synthesized compounds will affect a person's metabolism and, hence, the development of novel treatments to improve one's health. The study of metabolomic pathways, together with protein engineering, may also aid in the extraction, at a scale, of natural products to be used as drugs and drug precursors. Several approaches have been used to correlate protein annotations to metabolic pathways in order to derive pathways directly related to specific organisms. These could range from association rule-mining techniques to machine learning methods such as decision trees, naïve Bayes, logistic regression, and ensemble methods.In this chapter, we will be reviewing the use of machine learning for metabolic pathway analyses, with a step-by-step focus on the use of deep learning to predict the association of compounds (metabolites) to their respective metabolomic pathway classes. This prediction could help explain interactions of small molecules in organisms. Inspired by the work of Baranwal et al. (2019), we demonstrate how to build and train a deep learning neural network model to perform a multi-label prediction. We considered two different types of fingerprints as features (inputs to the model). The output of the model is the set of metabolic pathway classes (from the KEGG dataset) in which the input molecule participates. We will walk through the various steps of this process, including data collection, feature engineering, model selection, training, and evaluation. This model-building and evaluation process may be easily transferred to other domains of interest. All the source code used in this chapter is made publicly available at https://github.com/jp-um/machine_learning_for_metabolomic_pathway_analyses .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张鱼小丸子完成签到,获得积分10
刚刚
Wen发布了新的文献求助10
1秒前
害羞向日葵完成签到 ,获得积分10
1秒前
VDC应助惜筠采纳,获得30
1秒前
Always62442发布了新的文献求助10
1秒前
multi发布了新的文献求助10
2秒前
完美世界应助kook采纳,获得10
2秒前
好样的完成签到,获得积分10
2秒前
3秒前
4秒前
xiaofu完成签到,获得积分10
6秒前
km完成签到,获得积分10
6秒前
myt发布了新的文献求助30
6秒前
无极微光应助十米采纳,获得20
6秒前
6秒前
CodeCraft应助小飞鼠采纳,获得10
6秒前
7秒前
盛夏如花发布了新的文献求助10
7秒前
7秒前
455发布了新的文献求助10
7秒前
dragon完成签到 ,获得积分10
7秒前
斯文败类应助烂漫耳机采纳,获得10
8秒前
渔落发布了新的文献求助10
8秒前
阳光水绿完成签到,获得积分10
8秒前
9秒前
我是狗发布了新的文献求助10
9秒前
黑白菜完成签到,获得积分10
9秒前
10秒前
Always62442完成签到,获得积分10
10秒前
凌L发布了新的文献求助10
10秒前
GH发布了新的文献求助10
10秒前
桐桐应助11采纳,获得40
10秒前
研友_nqvkOZ完成签到,获得积分10
11秒前
12138完成签到,获得积分10
11秒前
11秒前
背后含之完成签到,获得积分10
11秒前
共享精神应助木辛采纳,获得10
12秒前
12秒前
bqk完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836