Machine Learning Using Neural Networks for Metabolomic Pathway Analyses

人工智能 机器学习 计算机科学 人工神经网络 代谢途径 代谢组学 深度学习 朴素贝叶斯分类器 小桶 药物发现 集合(抽象数据类型) 计算生物学 生物信息学 化学 支持向量机 生物 生物化学 基因 基因表达 转录组 程序设计语言
作者
Rosalin Bonetta,Jean-Paul Ebejer,Gianluca Valentino
出处
期刊:Methods in molecular biology [Springer Science+Business Media]
卷期号:: 395-415 被引量:1
标识
DOI:10.1007/978-1-0716-2617-7_17
摘要

Elucidating the mechanisms of metabolic pathways helps us understand the cascade of enzyme-catalyzed reactions that lead to the conversion of substances into final products. This has implications for predicting how newly synthesized compounds will affect a person's metabolism and, hence, the development of novel treatments to improve one's health. The study of metabolomic pathways, together with protein engineering, may also aid in the extraction, at a scale, of natural products to be used as drugs and drug precursors. Several approaches have been used to correlate protein annotations to metabolic pathways in order to derive pathways directly related to specific organisms. These could range from association rule-mining techniques to machine learning methods such as decision trees, naïve Bayes, logistic regression, and ensemble methods.In this chapter, we will be reviewing the use of machine learning for metabolic pathway analyses, with a step-by-step focus on the use of deep learning to predict the association of compounds (metabolites) to their respective metabolomic pathway classes. This prediction could help explain interactions of small molecules in organisms. Inspired by the work of Baranwal et al. (2019), we demonstrate how to build and train a deep learning neural network model to perform a multi-label prediction. We considered two different types of fingerprints as features (inputs to the model). The output of the model is the set of metabolic pathway classes (from the KEGG dataset) in which the input molecule participates. We will walk through the various steps of this process, including data collection, feature engineering, model selection, training, and evaluation. This model-building and evaluation process may be easily transferred to other domains of interest. All the source code used in this chapter is made publicly available at https://github.com/jp-um/machine_learning_for_metabolomic_pathway_analyses .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
打打应助布丁大王采纳,获得10
2秒前
赵西里发布了新的文献求助30
3秒前
懒大王完成签到 ,获得积分10
4秒前
5秒前
5秒前
自己完成签到,获得积分10
6秒前
七个小矮人完成签到,获得积分10
7秒前
婧婧发布了新的文献求助10
11秒前
13秒前
14秒前
MS903发布了新的文献求助10
17秒前
17秒前
18秒前
张馨月发布了新的文献求助10
18秒前
20秒前
21秒前
22秒前
材料小白完成签到 ,获得积分10
22秒前
healer完成签到,获得积分10
22秒前
执笔发布了新的文献求助10
22秒前
AOPs完成签到,获得积分10
23秒前
24秒前
重师大大怪完成签到,获得积分10
24秒前
25秒前
healer发布了新的文献求助20
25秒前
xuanxuan1205发布了新的文献求助10
25秒前
26秒前
扣扣尼哇发布了新的文献求助10
27秒前
30秒前
DZ完成签到 ,获得积分10
30秒前
小王完成签到,获得积分10
30秒前
星辰大海应助糟糕的夏云采纳,获得10
32秒前
33秒前
Singularity应助重师大大怪采纳,获得10
34秒前
34秒前
Rheanna发布了新的文献求助10
35秒前
36秒前
萱萱发布了新的文献求助10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396