MI-EEG classification using Shannon complex wavelet and convolutional neural networks

模式识别(心理学) 人工智能 计算机科学 脑电图 卷积神经网络 小波 小波变换 语音识别 心理学 精神科
作者
Chang Wang,Yang‐Chang Wu,Chen Wang,Yu Zhu,Chong Wang,Yanxiang Niu,Zhenpeng Shao,Xudong Gao,Zongya Zhao,Yi Yu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:130: 109685-109685 被引量:13
标识
DOI:10.1016/j.asoc.2022.109685
摘要

Many classification methods by machine learning and convolutional neural networks (CNN) have been proposed to recognize MI-EEG recently. However, the indescribable properties and individual differences of the MI-EEG signals cause low classification accuracy. In this study, a new MI-EEG classification method was designed to improve classification accuracy by combining Shannon complex wavelets and convolutional neural networks. First, the original MI-EEG was preprocessed using EEGLAB by channel selection and bandpass filtering. Second, the Shannon complex wavelet was used as the time–frequency transform strategy to calculate the time–frequency​ matrix. Finally, an improved Resnet was used to classify the time–frequency​ matrix to complete the MI-EEG identification. BCI competition IV dataset 2b as a public motor imagination dataset was tested to prove the validation of this proposed method. The classification accuracy and kappa value were adopted to prove the superiority of the proposed method by comparing it with the state-of-the-art classification methods. Experimental results showed that the classification accuracy and kappa values are 0.852 and 0.704, respectively, and they are the highest in the state-of-the-art. The parameter influence of wavelet wavelength and interception time on classification accuracy was discussed and optimized. This method can effectively improve classification accuracy and has a wide range of applications in MI-EEG classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xh完成签到,获得积分20
刚刚
迟大猫应助周舟采纳,获得10
刚刚
刚刚
1秒前
1秒前
SLS完成签到,获得积分10
2秒前
2秒前
2秒前
swsx1317发布了新的文献求助10
3秒前
4秒前
kilig应助hohokuz采纳,获得10
4秒前
LKSkywalker完成签到,获得积分10
4秒前
4秒前
田様应助大晨采纳,获得10
4秒前
BWZ发布了新的文献求助10
4秒前
6秒前
西子阳发布了新的文献求助10
6秒前
6秒前
下课了吧发布了新的文献求助10
6秒前
6秒前
朴实山兰完成签到,获得积分10
6秒前
6秒前
7秒前
啊嚯发布了新的文献求助10
7秒前
草上飞完成签到 ,获得积分10
7秒前
小罗飞飞飞完成签到 ,获得积分10
7秒前
7秒前
L龙完成签到,获得积分20
8秒前
雯雯完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
科研通AI5应助LZZ采纳,获得10
8秒前
情怀应助WxChen采纳,获得10
8秒前
Akim应助WxChen采纳,获得10
9秒前
深情安青应助WxChen采纳,获得10
9秒前
请叫我风吹麦浪应助WxChen采纳,获得10
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762