MI-EEG classification using Shannon complex wavelet and convolutional neural networks

模式识别(心理学) 人工智能 计算机科学 脑电图 卷积神经网络 小波 小波变换 语音识别 心理学 精神科
作者
Chang Wang,Yang‐Chang Wu,Chen Wang,Yu Zhu,Chong Wang,Yanxiang Niu,Zhenpeng Shao,Xudong Gao,Zongya Zhao,Yi Yu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:130: 109685-109685 被引量:16
标识
DOI:10.1016/j.asoc.2022.109685
摘要

Many classification methods by machine learning and convolutional neural networks (CNN) have been proposed to recognize MI-EEG recently. However, the indescribable properties and individual differences of the MI-EEG signals cause low classification accuracy. In this study, a new MI-EEG classification method was designed to improve classification accuracy by combining Shannon complex wavelets and convolutional neural networks. First, the original MI-EEG was preprocessed using EEGLAB by channel selection and bandpass filtering. Second, the Shannon complex wavelet was used as the time–frequency transform strategy to calculate the time–frequency​ matrix. Finally, an improved Resnet was used to classify the time–frequency​ matrix to complete the MI-EEG identification. BCI competition IV dataset 2b as a public motor imagination dataset was tested to prove the validation of this proposed method. The classification accuracy and kappa value were adopted to prove the superiority of the proposed method by comparing it with the state-of-the-art classification methods. Experimental results showed that the classification accuracy and kappa values are 0.852 and 0.704, respectively, and they are the highest in the state-of-the-art. The parameter influence of wavelet wavelength and interception time on classification accuracy was discussed and optimized. This method can effectively improve classification accuracy and has a wide range of applications in MI-EEG classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhangzhangzhang完成签到,获得积分10
2秒前
Gotyababy发布了新的文献求助10
2秒前
关尔匕禾页完成签到,获得积分10
2秒前
2秒前
3秒前
Owen应助沉默毛豆采纳,获得10
3秒前
3秒前
火星上誉发布了新的文献求助10
3秒前
Jasper应助LL采纳,获得10
4秒前
4秒前
精神小伙完成签到,获得积分10
4秒前
Amon发布了新的文献求助10
4秒前
英俊的铭应助zgd采纳,获得10
4秒前
77发布了新的文献求助30
5秒前
扶南发布了新的文献求助10
5秒前
温暖的问候完成签到,获得积分10
5秒前
精神小伙发布了新的文献求助50
6秒前
6秒前
科研小白发布了新的文献求助10
7秒前
white发布了新的文献求助10
7秒前
挽秋发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
10秒前
10秒前
在水一方应助念初采纳,获得10
10秒前
11秒前
11秒前
Xiaofeng关注了科研通微信公众号
12秒前
wmt完成签到,获得积分10
13秒前
传奇3应助咔咔咔采纳,获得10
13秒前
13秒前
13秒前
tdtk发布了新的文献求助20
14秒前
WuzJ1ee完成签到,获得积分20
14秒前
科研通AI6应助追寻的宛er采纳,获得10
14秒前
15秒前
储物间完成签到,获得积分10
15秒前
15秒前
hdbys发布了新的文献求助30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871