Screening naturally mildewed maize kernels based on Raman hyperspectral imaging coupled with machine learning classifiers

高光谱成像 线性判别分析 支持向量机 随机森林 朴素贝叶斯分类器 人工智能 极限学习机 计算机科学 分类器(UML) 偏最小二乘回归 核(代数) 模式识别(心理学) 机器学习 数学 人工神经网络 组合数学
作者
Long Yuan,Qingyan Wang,Xi Tian,Bin Zhang,Wenqian Huang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:45 (11) 被引量:1
标识
DOI:10.1111/jfpe.14148
摘要

Abstract Mildewed maize kernels were common in nature and they were harmful to humans and livestocks. Therefore, it is essential to screen the mildewed maize kernels and improve food security. In this study, Raman hyperspectral imaging technique was used to screen the mildewed maize kernels. Hyperspectral imaging of both embryo‐up and embryo‐down side were taken into consideration and the effect of their weight ratio on the screening accuracy was compared. Pixel‐wise approach and object‐wise approach were both analyzed and different variables selection methods were applied to optimize the input variables. Six machine learning classifiers including random forest (RF), support vector machine (SVM), linear discriminant analysis (LDA), extreme learning machine (ELM), partial least squares discriminant analysis (PLSDA), and naive Bayes classifier (NBC) were used to establish the screening models. The results exhibited 19 variables selected by competitive adaptive reweighted sampling (CARS) method from the weight ratio of 3:7 based on object‐wise approach were the most suitable for establishment of screening model with accuracy of 90.63% in the testing set. The microscopic mechanism of mildewed maize kernels was illustrated by micro‐fluorescence imaging. The study showed that Raman hyperspectral imaging combined with both embryo‐up and embryo‐down sides of maize kernels could be used as effective methods to improve the accuracy of screening mildewed maize kernels. Practical Applications This study provides a comprehensive analysis about the pixels and both sides of maize kernels and gives a nondestructive screening method based on both sides of maize kernels for the mildewed detection. According the mildew of maize kernels, enterprises can effectively improve the storage efficiency of maize kernels to reduce economic losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恬恬完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
热依汗古丽完成签到,获得积分10
1秒前
HX发布了新的文献求助20
1秒前
2秒前
qian完成签到 ,获得积分10
3秒前
3秒前
Zzzzzzzzzzz发布了新的文献求助10
4秒前
4秒前
4秒前
典雅的果汁完成签到,获得积分20
6秒前
Laus完成签到,获得积分20
7秒前
搜集达人应助gzsy采纳,获得10
7秒前
俭朴夜雪发布了新的文献求助10
7秒前
Hello应助橙橙梨梨茶采纳,获得10
8秒前
认真的rain发布了新的文献求助50
9秒前
深情的鑫鹏完成签到,获得积分10
9秒前
寒涛先生发布了新的文献求助10
10秒前
空心发布了新的文献求助30
10秒前
希望天下0贩的0应助星星采纳,获得10
11秒前
krkr完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI5应助111111111采纳,获得10
12秒前
12秒前
粗犷的书包完成签到,获得积分10
13秒前
Jasper应助shanbaibai采纳,获得10
13秒前
13秒前
Laus发布了新的文献求助10
16秒前
16秒前
cheung发布了新的文献求助10
16秒前
害羞向日葵完成签到 ,获得积分10
17秒前
ppp完成签到,获得积分10
18秒前
唠叨的白萱完成签到,获得积分10
19秒前
傲娇的凡旋完成签到,获得积分10
19秒前
fusheng完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808