已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Screening naturally mildewed maize kernels based on Raman hyperspectral imaging coupled with machine learning classifiers

高光谱成像 线性判别分析 支持向量机 随机森林 朴素贝叶斯分类器 人工智能 极限学习机 计算机科学 分类器(UML) 偏最小二乘回归 核(代数) 模式识别(心理学) 机器学习 数学 人工神经网络 组合数学
作者
Long Yuan,Qingyan Wang,Xi Tian,Bin Zhang,Wenqian Huang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:45 (11) 被引量:1
标识
DOI:10.1111/jfpe.14148
摘要

Abstract Mildewed maize kernels were common in nature and they were harmful to humans and livestocks. Therefore, it is essential to screen the mildewed maize kernels and improve food security. In this study, Raman hyperspectral imaging technique was used to screen the mildewed maize kernels. Hyperspectral imaging of both embryo‐up and embryo‐down side were taken into consideration and the effect of their weight ratio on the screening accuracy was compared. Pixel‐wise approach and object‐wise approach were both analyzed and different variables selection methods were applied to optimize the input variables. Six machine learning classifiers including random forest (RF), support vector machine (SVM), linear discriminant analysis (LDA), extreme learning machine (ELM), partial least squares discriminant analysis (PLSDA), and naive Bayes classifier (NBC) were used to establish the screening models. The results exhibited 19 variables selected by competitive adaptive reweighted sampling (CARS) method from the weight ratio of 3:7 based on object‐wise approach were the most suitable for establishment of screening model with accuracy of 90.63% in the testing set. The microscopic mechanism of mildewed maize kernels was illustrated by micro‐fluorescence imaging. The study showed that Raman hyperspectral imaging combined with both embryo‐up and embryo‐down sides of maize kernels could be used as effective methods to improve the accuracy of screening mildewed maize kernels. Practical Applications This study provides a comprehensive analysis about the pixels and both sides of maize kernels and gives a nondestructive screening method based on both sides of maize kernels for the mildewed detection. According the mildew of maize kernels, enterprises can effectively improve the storage efficiency of maize kernels to reduce economic losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
研友_Z6Qrbn完成签到,获得积分10
5秒前
刘晚柠完成签到 ,获得积分10
6秒前
王王完成签到,获得积分10
6秒前
guangwow发布了新的文献求助10
8秒前
西瓜刀完成签到 ,获得积分10
8秒前
kitty完成签到 ,获得积分10
9秒前
dichloro发布了新的文献求助10
9秒前
kjding发布了新的文献求助10
10秒前
吴宵完成签到,获得积分10
12秒前
12秒前
15秒前
科研通AI2S应助漫漫采纳,获得10
16秒前
jianghs完成签到,获得积分0
16秒前
18秒前
囤板栗的松鼠完成签到 ,获得积分10
18秒前
不与仙同完成签到 ,获得积分10
20秒前
22秒前
刻苦的溪流完成签到,获得积分10
23秒前
yx完成签到,获得积分10
24秒前
彭于晏应助柴柴采纳,获得10
32秒前
王王发布了新的文献求助10
34秒前
35秒前
ldysaber完成签到,获得积分10
35秒前
江离完成签到 ,获得积分10
36秒前
37秒前
luchen发布了新的文献求助10
38秒前
YYDS54发布了新的文献求助30
43秒前
雷锋完成签到,获得积分10
46秒前
zoye完成签到 ,获得积分10
46秒前
呆呆不瓜发布了新的文献求助10
49秒前
江彪发布了新的文献求助20
49秒前
王伟军发布了新的文献求助10
52秒前
54秒前
跳跃仙人掌应助连安阳采纳,获得600
56秒前
伯爵完成签到 ,获得积分10
57秒前
yxm完成签到 ,获得积分10
59秒前
YYDS54完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207659
求助须知:如何正确求助?哪些是违规求助? 2856984
关于积分的说明 8108031
捐赠科研通 2522482
什么是DOI,文献DOI怎么找? 1355756
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613602