Screening naturally mildewed maize kernels based on Raman hyperspectral imaging coupled with machine learning classifiers

高光谱成像 线性判别分析 支持向量机 随机森林 朴素贝叶斯分类器 人工智能 极限学习机 计算机科学 分类器(UML) 偏最小二乘回归 核(代数) 模式识别(心理学) 机器学习 数学 人工神经网络 组合数学
作者
Long Yuan,Qingyan Wang,Xi Tian,Bin Zhang,Wenqian Huang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:45 (11) 被引量:1
标识
DOI:10.1111/jfpe.14148
摘要

Abstract Mildewed maize kernels were common in nature and they were harmful to humans and livestocks. Therefore, it is essential to screen the mildewed maize kernels and improve food security. In this study, Raman hyperspectral imaging technique was used to screen the mildewed maize kernels. Hyperspectral imaging of both embryo‐up and embryo‐down side were taken into consideration and the effect of their weight ratio on the screening accuracy was compared. Pixel‐wise approach and object‐wise approach were both analyzed and different variables selection methods were applied to optimize the input variables. Six machine learning classifiers including random forest (RF), support vector machine (SVM), linear discriminant analysis (LDA), extreme learning machine (ELM), partial least squares discriminant analysis (PLSDA), and naive Bayes classifier (NBC) were used to establish the screening models. The results exhibited 19 variables selected by competitive adaptive reweighted sampling (CARS) method from the weight ratio of 3:7 based on object‐wise approach were the most suitable for establishment of screening model with accuracy of 90.63% in the testing set. The microscopic mechanism of mildewed maize kernels was illustrated by micro‐fluorescence imaging. The study showed that Raman hyperspectral imaging combined with both embryo‐up and embryo‐down sides of maize kernels could be used as effective methods to improve the accuracy of screening mildewed maize kernels. Practical Applications This study provides a comprehensive analysis about the pixels and both sides of maize kernels and gives a nondestructive screening method based on both sides of maize kernels for the mildewed detection. According the mildew of maize kernels, enterprises can effectively improve the storage efficiency of maize kernels to reduce economic losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
eric888应助一丢丢采纳,获得200
1秒前
小蘑菇应助贺万万采纳,获得10
1秒前
望舒完成签到 ,获得积分10
3秒前
Ning00000发布了新的文献求助10
3秒前
4秒前
巡风完成签到,获得积分20
4秒前
5秒前
5秒前
yuhongsun完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助150
6秒前
包容寻菡发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
太阳完成签到 ,获得积分10
7秒前
totoo2021发布了新的文献求助10
7秒前
Lucas应助baokehui采纳,获得10
7秒前
JamesPei应助还好采纳,获得30
8秒前
科研通AI6应助11采纳,获得10
8秒前
8秒前
arizaki7发布了新的文献求助10
9秒前
壮观若南发布了新的文献求助10
10秒前
tqmx发布了新的文献求助10
10秒前
chengzhiheng发布了新的文献求助10
10秒前
11秒前
初见完成签到 ,获得积分10
11秒前
平凡完成签到,获得积分10
11秒前
11秒前
传奇3应助znn123采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
筱璞羲发布了新的文献求助10
14秒前
曦曦完成签到 ,获得积分10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942890
求助须知:如何正确求助?哪些是违规求助? 4208298
关于积分的说明 13081999
捐赠科研通 3987523
什么是DOI,文献DOI怎么找? 2183163
邀请新用户注册赠送积分活动 1198757
关于科研通互助平台的介绍 1111169