Screening naturally mildewed maize kernels based on Raman hyperspectral imaging coupled with machine learning classifiers

高光谱成像 线性判别分析 支持向量机 随机森林 朴素贝叶斯分类器 人工智能 极限学习机 计算机科学 分类器(UML) 偏最小二乘回归 核(代数) 模式识别(心理学) 机器学习 数学 人工神经网络 组合数学
作者
Long Yuan,Qingyan Wang,Xi Tian,Bin Zhang,Wenqian Huang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:45 (11) 被引量:1
标识
DOI:10.1111/jfpe.14148
摘要

Abstract Mildewed maize kernels were common in nature and they were harmful to humans and livestocks. Therefore, it is essential to screen the mildewed maize kernels and improve food security. In this study, Raman hyperspectral imaging technique was used to screen the mildewed maize kernels. Hyperspectral imaging of both embryo‐up and embryo‐down side were taken into consideration and the effect of their weight ratio on the screening accuracy was compared. Pixel‐wise approach and object‐wise approach were both analyzed and different variables selection methods were applied to optimize the input variables. Six machine learning classifiers including random forest (RF), support vector machine (SVM), linear discriminant analysis (LDA), extreme learning machine (ELM), partial least squares discriminant analysis (PLSDA), and naive Bayes classifier (NBC) were used to establish the screening models. The results exhibited 19 variables selected by competitive adaptive reweighted sampling (CARS) method from the weight ratio of 3:7 based on object‐wise approach were the most suitable for establishment of screening model with accuracy of 90.63% in the testing set. The microscopic mechanism of mildewed maize kernels was illustrated by micro‐fluorescence imaging. The study showed that Raman hyperspectral imaging combined with both embryo‐up and embryo‐down sides of maize kernels could be used as effective methods to improve the accuracy of screening mildewed maize kernels. Practical Applications This study provides a comprehensive analysis about the pixels and both sides of maize kernels and gives a nondestructive screening method based on both sides of maize kernels for the mildewed detection. According the mildew of maize kernels, enterprises can effectively improve the storage efficiency of maize kernels to reduce economic losses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234567发布了新的文献求助10
刚刚
拼搏的白云完成签到,获得积分10
1秒前
1秒前
3秒前
4秒前
明亮的冷雪完成签到,获得积分10
4秒前
5秒前
顾矜应助zzz采纳,获得10
5秒前
6秒前
Silole发布了新的文献求助10
6秒前
8秒前
黄远鹏完成签到 ,获得积分10
8秒前
飞快的盈发布了新的文献求助10
10秒前
zoey发布了新的文献求助10
11秒前
hush完成签到,获得积分20
11秒前
1234567发布了新的文献求助10
12秒前
13秒前
14秒前
小灰完成签到,获得积分10
14秒前
Aaron567应助柠檬巧克力采纳,获得50
15秒前
风中的碧玉完成签到,获得积分10
17秒前
nini完成签到,获得积分20
18秒前
Zoye完成签到 ,获得积分10
19秒前
李成哲发布了新的文献求助10
19秒前
tczw667完成签到,获得积分10
20秒前
20秒前
脑洞疼应助飞兰采纳,获得10
20秒前
sandwich完成签到 ,获得积分10
21秒前
21秒前
zzz完成签到,获得积分10
23秒前
Hello应助zoey采纳,获得10
23秒前
zyyin完成签到,获得积分10
24秒前
Silole发布了新的文献求助10
24秒前
24秒前
张泽宇完成签到,获得积分10
25秒前
25秒前
1234567发布了新的文献求助10
25秒前
悦耳寒云完成签到,获得积分10
26秒前
Inory007完成签到,获得积分10
27秒前
七分侥幸发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373655
求助须知:如何正确求助?哪些是违规求助? 4499675
关于积分的说明 14007024
捐赠科研通 4406529
什么是DOI,文献DOI怎么找? 2420537
邀请新用户注册赠送积分活动 1413340
关于科研通互助平台的介绍 1389891