Electrochemical CO2 Reduction over Metal-/Nitrogen-Doped Graphene Single-Atom Catalysts Modeled Using the Grand-Canonical Density Functional Theory

密度泛函理论 电催化剂 催化作用 电化学 石墨烯 标准氢电极 材料科学 无机化学 可逆氢电极 金属 化学 化学物理 物理化学 计算化学 纳米技术 电极 工作电极 有机化学
作者
Paige Brimley,Hussain M. Almajed,Yousef A. Alsunni,Abdulaziz Alherz,Zachary J. L. Bare,Wilson A. Smith,Charles B. Musgrave
出处
期刊:ACS Catalysis 卷期号:12 (16): 10161-10171 被引量:39
标识
DOI:10.1021/acscatal.2c01832
摘要

Renewably driven, electrochemical conversion of carbon dioxide into value-added products is expected to be a critical tool in global decarbonization. However, theoretical studies based on the computational hydrogen electrode largely ignore the nonlinear effects of the applied potential on the calculated results, leading to inaccurate predictions of catalytic behavior or mechanistic pathways. Here, we use grand canonical density functional theory (GC-DFT) to model electrochemical CO2 reduction (CO2R) over metal- and nitrogen-doped graphene catalysts (MNCs) and explicitly include the effects of the applied potential. We used GC-DFT to compute the CO2 to CO reaction intermediate energies at −0.3, −0.7, and −1.2 VSHE catalyzed by MNCs each doped with 1 of the 10 3d block metals coordinated by four pyridinic nitrogen atoms. Our results predict that Sc-, Ti-, Co-, Cu-, and Zn-N4Cs effectively catalyze CO2R at moderate to large reducing potentials (−0.7 to −1.2 VSHE). ZnN4C is a particularly promising electrocatalyst for CO2R to CO both at low and moderate applied potentials based on our thermodynamic analysis. Our findings also explain the observed pH independence of CO production over FeN4C and predict that the rate-determining step of CO2R over FeN4C is not *CO2– formation but rather *CO desorption. Additionally, the GC-DFT-computed density of states analysis illustrates how the electronic states of MNCs and adsorbates change non-uniformly with applied potential, resulting in a significantly increased *CO2– stability relative to other intermediates and demonstrating that the formation of the adsorbed *CO2– anion is critical to CO2R activation. This work demonstrates how GC-DFT paves the way for physically realistic and accurate theoretical simulations of reacting electrochemical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮光完成签到,获得积分10
1秒前
Xuan发布了新的文献求助10
1秒前
科研通AI5应助sunxs采纳,获得30
1秒前
tuotuo关注了科研通微信公众号
2秒前
2秒前
zqy完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
2秒前
2秒前
易三木完成签到,获得积分10
2秒前
AMORE发布了新的文献求助30
3秒前
传奇3应助Flyzhang采纳,获得10
3秒前
白方明发布了新的文献求助10
4秒前
Caroline完成签到 ,获得积分10
4秒前
zengxinhong发布了新的文献求助10
6秒前
王安石发布了新的文献求助10
6秒前
Hao发布了新的文献求助10
6秒前
9秒前
Owen应助俊逸的代曼采纳,获得10
9秒前
yar应助chandlusf采纳,获得10
9秒前
10秒前
爱笑完成签到,获得积分10
10秒前
zhzhzh完成签到,获得积分10
11秒前
何辞为完成签到,获得积分10
11秒前
坦率的语芙完成签到,获得积分10
12秒前
陶醉板栗完成签到,获得积分10
13秒前
14秒前
呼斯冷发布了新的文献求助10
14秒前
钰钰发布了新的文献求助10
15秒前
15秒前
香菜精发布了新的文献求助10
16秒前
FashionBoy应助飘逸的凝荷采纳,获得10
16秒前
球球搞学术完成签到,获得积分20
16秒前
sunxs完成签到,获得积分20
18秒前
18秒前
18秒前
19秒前
Jasper应助程许采纳,获得30
20秒前
Hello应助HERACLE采纳,获得10
20秒前
zengxinhong完成签到,获得积分10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483444
求助须知:如何正确求助?哪些是违规求助? 3072776
关于积分的说明 9127955
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517151
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797