ML-guided design and screening of chalcogenide catalysts for hydrogen evolution reaction

催化作用 硫系化合物 塔菲尔方程 过渡金属 化学 Atom(片上系统) 吸附 密度泛函理论 氢原子 金属 化学工程 纳米技术 材料科学 物理化学 电化学 计算化学 计算机科学 有机化学 电极 嵌入式系统 工程类 烷基
作者
Linnan Tu,Yingju Yang,Jing Liu
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:47 (73): 31321-31329 被引量:12
标识
DOI:10.1016/j.ijhydene.2022.07.056
摘要

Transition metal chalcogenides are regarded as the promising electrocatalysts for the hydrogen evolution reaction (HER). However, based on the larger chemical composition space of transition-metal single atom and chalcogenides, the design and screening of excellent HER electrocatalysts remain the challenges. Herein, a machine learning (ML) model was proposed to predict the HER performance of single-atom chalcogenide catalysts, and used to screen the excellent electrocatalysts by combining with density functional theory calculations. The results show that the ML model can predict the HER catalytic activity well. The band gap of support materials is identified as the most important descriptor of single-atom chalcogenide catalysts for HER. [email protected] and [email protected] exhibit excellent catalytic activity towards HER, and even outperform the current most efficient Pt catalysts. The hydrogen adsorption free energies of [email protected] and [email protected] are 0.04 eV and −0.05 eV, respectively. Both Heyrovsky and Tafel reaction mechanisms are responsible for the HER of [email protected] catalyst. The HER of [email protected] catalyst is mainly controlled by the Heyrovsky mechanism. [email protected] and [email protected] are considered as the promising electrocatalysts for the HER. This study can provide a competitive tool to predict the activity trends and to accelerate the catalyst design and screening for other catalytic reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助尊敬的惠采纳,获得10
2秒前
NexusExplorer应助研友_Y59685采纳,获得10
2秒前
田様应助蛋卷儿采纳,获得10
2秒前
明亮夏兰发布了新的文献求助10
3秒前
大力完成签到,获得积分10
3秒前
3秒前
852应助一人独钓一江秋采纳,获得10
3秒前
大个应助proteinpurify采纳,获得10
4秒前
5秒前
5秒前
6秒前
反派完成签到,获得积分10
6秒前
7秒前
俭朴的猫咪完成签到,获得积分10
7秒前
小陈同学完成签到,获得积分10
7秒前
一路硕博发布了新的文献求助10
7秒前
宛筠发布了新的文献求助10
8秒前
忧虑的乐驹完成签到,获得积分10
8秒前
忆韶完成签到,获得积分10
9秒前
Topofme完成签到,获得积分10
9秒前
平淡小白菜完成签到,获得积分10
9秒前
大白锰完成签到,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
子车茗应助科研通管家采纳,获得30
11秒前
11秒前
星辰大海应助科研通管家采纳,获得30
11秒前
爆米花应助科研通管家采纳,获得30
11秒前
子车茗应助科研通管家采纳,获得30
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774680
求助须知:如何正确求助?哪些是违规求助? 3320470
关于积分的说明 10200348
捐赠科研通 3035183
什么是DOI,文献DOI怎么找? 1665375
邀请新用户注册赠送积分活动 796901
科研通“疑难数据库(出版商)”最低求助积分说明 757635