Online water quality monitoring based on UV–Vis spectrometry and artificial neural networks in a river confluence near Sherfield-on-Loddon

相关系数 人工神经网络 偏最小二乘回归 水质 卷积神经网络 环境科学 质谱法 计算机科学
作者
Zhang Hongming,Lifu Zhang,Sa Wang,LinShan Zhang
出处
期刊:Environmental Monitoring and Assessment [Springer Science+Business Media]
卷期号:194 (9)
标识
DOI:10.1007/s10661-022-10118-4
摘要

Abstract Water quality monitoring is very important in agricultural catchments. UV–Vis spectrometry is widely used in place of traditional analytical methods because it is cost effective and fast and there is no chemical waste. In recent years, artificial neural networks have been extensively studied and used in various areas. In this study, we plan to simplify water quality monitoring with UV–Vis spectrometry and artificial neural networks. Samples were collected and immediately taken back to a laboratory for analysis. The absorption spectra of the water sample were acquired within a wavelength range from 200 to 800 nm. Convolutional neural network (CNN) and partial least squares (PLS) methods are used to calculate water parameters and obtain accurate results. The experimental results of this study show that both PLS and CNN methods may obtain an accurate result: linear correlation coefficient (R 2 ) between predicted value and true values of TOC concentrations is 0.927 with PLS model and 0.953 with CNN model, R 2 between predicted value and true values of TSS concentrations is 0.827 with PLS model and 0.915 with CNN model. CNN method may obtain a better linear correlation coefficient (R 2 ) even with small number of samples and can be used for online water quality monitoring combined with UV–Vis spectrometry in agricultural catchment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Water发布了新的文献求助10
刚刚
1秒前
1秒前
思源应助小孙孙采纳,获得10
2秒前
芋泥啵啵发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
顾矜应助cony采纳,获得10
4秒前
4秒前
蒋雪静发布了新的文献求助50
6秒前
6秒前
烂漫臻发布了新的文献求助10
6秒前
6秒前
YY发布了新的文献求助10
6秒前
宣仰完成签到,获得积分10
6秒前
7秒前
英姑应助靓丽芙蓉采纳,获得10
7秒前
我的文献呢应助lmh采纳,获得30
7秒前
尚尚下下完成签到,获得积分10
7秒前
xixixi发布了新的文献求助10
7秒前
gi发布了新的文献求助10
8秒前
快乐难敌完成签到,获得积分10
8秒前
8秒前
8秒前
东东发布了新的文献求助10
8秒前
邢巾完成签到 ,获得积分10
9秒前
快乐难敌发布了新的文献求助10
10秒前
10秒前
为你博弈发布了新的文献求助10
11秒前
郑盼秋发布了新的文献求助10
11秒前
murongbo发布了新的文献求助30
11秒前
11秒前
缓慢海亦发布了新的文献求助10
11秒前
酷酷筝发布了新的文献求助10
12秒前
烟花应助walu采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
可爱的函函应助太叔书南采纳,获得10
13秒前
小二郎应助好多分采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971125
求助须知:如何正确求助?哪些是违规求助? 3515824
关于积分的说明 11179811
捐赠科研通 3250971
什么是DOI,文献DOI怎么找? 1795610
邀请新用户注册赠送积分活动 875897
科研通“疑难数据库(出版商)”最低求助积分说明 805207