Online water quality monitoring based on UV–Vis spectrometry and artificial neural networks in a river confluence near Sherfield-on-Loddon

相关系数 人工神经网络 偏最小二乘回归 水质 卷积神经网络 环境科学 质谱法 计算机科学
作者
Zhang Hongming,Lifu Zhang,Sa Wang,LinShan Zhang
出处
期刊:Environmental Monitoring and Assessment [Springer Nature]
卷期号:194 (9)
标识
DOI:10.1007/s10661-022-10118-4
摘要

Abstract Water quality monitoring is very important in agricultural catchments. UV–Vis spectrometry is widely used in place of traditional analytical methods because it is cost effective and fast and there is no chemical waste. In recent years, artificial neural networks have been extensively studied and used in various areas. In this study, we plan to simplify water quality monitoring with UV–Vis spectrometry and artificial neural networks. Samples were collected and immediately taken back to a laboratory for analysis. The absorption spectra of the water sample were acquired within a wavelength range from 200 to 800 nm. Convolutional neural network (CNN) and partial least squares (PLS) methods are used to calculate water parameters and obtain accurate results. The experimental results of this study show that both PLS and CNN methods may obtain an accurate result: linear correlation coefficient (R 2 ) between predicted value and true values of TOC concentrations is 0.927 with PLS model and 0.953 with CNN model, R 2 between predicted value and true values of TSS concentrations is 0.827 with PLS model and 0.915 with CNN model. CNN method may obtain a better linear correlation coefficient (R 2 ) even with small number of samples and can be used for online water quality monitoring combined with UV–Vis spectrometry in agricultural catchment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ltft完成签到,获得积分10
1秒前
庆qing完成签到,获得积分10
2秒前
3秒前
CodeCraft应助ltft采纳,获得10
4秒前
乐观寻雪完成签到,获得积分10
5秒前
无花果应助淡淡菠萝采纳,获得10
6秒前
8秒前
little_island发布了新的文献求助10
10秒前
天天快乐应助优雅的盼夏采纳,获得10
11秒前
完美世界应助xxxt采纳,获得30
15秒前
丘比特应助李暴龙采纳,获得10
16秒前
16秒前
我是老大应助sfxnxgu采纳,获得10
16秒前
星辰大海应助1234采纳,获得10
17秒前
CipherSage应助LZYJJ采纳,获得30
19秒前
19秒前
机灵夏云完成签到,获得积分10
19秒前
魔幻大有完成签到 ,获得积分10
19秒前
壮观小鸭子完成签到 ,获得积分10
19秒前
20秒前
听话的清完成签到 ,获得积分10
22秒前
25秒前
王富贵发布了新的文献求助10
25秒前
KK完成签到,获得积分20
28秒前
科目三应助坦率面包采纳,获得10
30秒前
31秒前
31秒前
kkk556发布了新的文献求助10
31秒前
yaoccccchen完成签到,获得积分10
32秒前
35秒前
LZYJJ发布了新的文献求助30
38秒前
科目三应助123456采纳,获得10
38秒前
_XXxxXX_发布了新的文献求助10
39秒前
39秒前
42秒前
无花果应助淡淡菠萝采纳,获得10
43秒前
43秒前
44秒前
二七完成签到 ,获得积分10
45秒前
科研通AI2S应助司空雨筠采纳,获得10
48秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140624
求助须知:如何正确求助?哪些是违规求助? 2791434
关于积分的说明 7798983
捐赠科研通 2447824
什么是DOI,文献DOI怎么找? 1302046
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194