Online water quality monitoring based on UV–Vis spectrometry and artificial neural networks in a river confluence near Sherfield-on-Loddon

相关系数 人工神经网络 偏最小二乘回归 水质 卷积神经网络 环境科学 质谱法 计算机科学
作者
Zhang Hongming,Lifu Zhang,Sa Wang,LinShan Zhang
出处
期刊:Environmental Monitoring and Assessment [Springer Science+Business Media]
卷期号:194 (9)
标识
DOI:10.1007/s10661-022-10118-4
摘要

Abstract Water quality monitoring is very important in agricultural catchments. UV–Vis spectrometry is widely used in place of traditional analytical methods because it is cost effective and fast and there is no chemical waste. In recent years, artificial neural networks have been extensively studied and used in various areas. In this study, we plan to simplify water quality monitoring with UV–Vis spectrometry and artificial neural networks. Samples were collected and immediately taken back to a laboratory for analysis. The absorption spectra of the water sample were acquired within a wavelength range from 200 to 800 nm. Convolutional neural network (CNN) and partial least squares (PLS) methods are used to calculate water parameters and obtain accurate results. The experimental results of this study show that both PLS and CNN methods may obtain an accurate result: linear correlation coefficient (R 2 ) between predicted value and true values of TOC concentrations is 0.927 with PLS model and 0.953 with CNN model, R 2 between predicted value and true values of TSS concentrations is 0.827 with PLS model and 0.915 with CNN model. CNN method may obtain a better linear correlation coefficient (R 2 ) even with small number of samples and can be used for online water quality monitoring combined with UV–Vis spectrometry in agricultural catchment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李爱国应助哈哈哈采纳,获得10
4秒前
潇洒夏山发布了新的文献求助30
4秒前
4秒前
sofia发布了新的文献求助10
4秒前
5秒前
体贴的青烟完成签到,获得积分10
5秒前
脑洞疼应助小猪哄哄采纳,获得10
6秒前
Chengcheng发布了新的文献求助10
6秒前
霸气向日葵完成签到,获得积分10
6秒前
8秒前
dumeng发布了新的文献求助10
8秒前
cholate关注了科研通微信公众号
9秒前
研究啥发布了新的文献求助30
10秒前
10秒前
mashichuang发布了新的文献求助10
12秒前
12秒前
vincy完成签到 ,获得积分10
12秒前
13秒前
脑洞疼应助潇洒夏山采纳,获得10
13秒前
caicai完成签到,获得积分10
14秒前
点点发布了新的文献求助30
15秒前
16秒前
17秒前
17秒前
17秒前
18秒前
WIsh完成签到 ,获得积分10
18秒前
自由飞翔完成签到,获得积分10
18秒前
20秒前
20秒前
研友_VZG7GZ应助学术悍匪采纳,获得10
22秒前
cholate发布了新的文献求助10
22秒前
ydfqlzj发布了新的文献求助10
24秒前
爱lx发布了新的文献求助10
25秒前
25秒前
鲤鱼香之完成签到,获得积分10
25秒前
26秒前
sofia完成签到,获得积分20
28秒前
ping发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976267
求助须知:如何正确求助?哪些是违规求助? 3520472
关于积分的说明 11203425
捐赠科研通 3257089
什么是DOI,文献DOI怎么找? 1798589
邀请新用户注册赠送积分活动 877785
科研通“疑难数据库(出版商)”最低求助积分说明 806523