Online water quality monitoring based on UV–Vis spectrometry and artificial neural networks in a river confluence near Sherfield-on-Loddon

相关系数 人工神经网络 偏最小二乘回归 水质 卷积神经网络 环境科学 质谱法 计算机科学
作者
Zhang Hongming,Lifu Zhang,Sa Wang,LinShan Zhang
出处
期刊:Environmental Monitoring and Assessment [Springer Science+Business Media]
卷期号:194 (9)
标识
DOI:10.1007/s10661-022-10118-4
摘要

Abstract Water quality monitoring is very important in agricultural catchments. UV–Vis spectrometry is widely used in place of traditional analytical methods because it is cost effective and fast and there is no chemical waste. In recent years, artificial neural networks have been extensively studied and used in various areas. In this study, we plan to simplify water quality monitoring with UV–Vis spectrometry and artificial neural networks. Samples were collected and immediately taken back to a laboratory for analysis. The absorption spectra of the water sample were acquired within a wavelength range from 200 to 800 nm. Convolutional neural network (CNN) and partial least squares (PLS) methods are used to calculate water parameters and obtain accurate results. The experimental results of this study show that both PLS and CNN methods may obtain an accurate result: linear correlation coefficient (R 2 ) between predicted value and true values of TOC concentrations is 0.927 with PLS model and 0.953 with CNN model, R 2 between predicted value and true values of TSS concentrations is 0.827 with PLS model and 0.915 with CNN model. CNN method may obtain a better linear correlation coefficient (R 2 ) even with small number of samples and can be used for online water quality monitoring combined with UV–Vis spectrometry in agricultural catchment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腻腻发布了新的文献求助10
1秒前
一彤展翅完成签到,获得积分10
1秒前
吉田清子发布了新的文献求助10
1秒前
言33发布了新的文献求助10
3秒前
3秒前
琉光完成签到,获得积分10
3秒前
拼搏菲鹰完成签到,获得积分10
4秒前
yurunxintian完成签到,获得积分10
4秒前
23完成签到 ,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
briliian发布了新的文献求助10
5秒前
5秒前
今后应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
哈哈应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
None应助科研通管家采纳,获得80
5秒前
qingfeng完成签到,获得积分10
5秒前
sleepingfish应助科研通管家采纳,获得20
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
qc应助科研通管家采纳,获得10
6秒前
c445507405完成签到 ,获得积分10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
言余应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213094
求助须知:如何正确求助?哪些是违规求助? 4389011
关于积分的说明 13665698
捐赠科研通 4249994
什么是DOI,文献DOI怎么找? 2331851
邀请新用户注册赠送积分活动 1329542
关于科研通互助平台的介绍 1283086