已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Construction and application of exclusive flavour fingerprints from fragrant rice based on gas chromatography – ion mobility spectrometry (GC‐IMS)

味道 化学 芳香 主成分分析 八醛 线性判别分析 色谱法 气相色谱-质谱法 质谱法 模式识别(心理学) 食品科学 人工智能 己醛 计算机科学
作者
Tong Chen,Haiyu Li,Xinyu Chen,Yong Wang,Qianwei Cheng,Xingpu Qi
出处
期刊:Flavour and Fragrance Journal [Wiley]
卷期号:37 (6): 345-353 被引量:6
标识
DOI:10.1002/ffj.3716
摘要

Abstract Fragrant rice has unique aroma characteristics appreciated by many consumers. In order to extract exclusive flavour fingerprints from Guangxi fragrant rice and to further verify its effectiveness by allowing the rapid identification of fragrant rice from two main production regions (Guangxi and Wuchang), gas chromatography‐ion mobility spectrometry (GC‐IMS) technology was applied to analyse flavour components of 53 fragrant rice samples. Based on the two‐dimensional GC‐IMS map, characteristic variables of flavour components from Guangxi fragrant rice were screened via image pretreatment and automatic threshold segmentation algorithm. The extracted variables were further processed by using principal component analysis and quadratic discriminant analysis to establish a non‐linear model for discriminating two types of fragrant rice. The results showed that a total of 46 characteristic variables were extracted from Guangxi fragrant rice, and the first two principal components showed that the two types of rice samples had their own corresponding regions. 2‐Butanone, 2‐heptanone, pinene, 1‐heptanal, 2‐methyl‐1‐butanol acetate and octanal were the key different flavour components. The established model had an excellent recognition rate, which could be used to determine the geographical region of fragrant rice. The proposed method could achieve quick, non‐destructive and accurate analysis of fragrant rice geographical properties. It can be further applied in feature extraction from the two‐dimensional fingerprint map generated by other similar combined instruments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气丹寒发布了新的文献求助10
1秒前
3秒前
hugeyoung完成签到,获得积分10
3秒前
yuyu发布了新的文献求助10
6秒前
小张发布了新的文献求助30
6秒前
丁鹏笑完成签到 ,获得积分0
7秒前
Kyrie完成签到,获得积分10
7秒前
小小邱发布了新的文献求助10
8秒前
夏炖鱿鱼发布了新的文献求助10
9秒前
英俊的铭应助wdx采纳,获得10
9秒前
王大炮完成签到 ,获得积分10
10秒前
霸气丹寒完成签到,获得积分20
11秒前
12秒前
12秒前
iamhawthorn完成签到,获得积分10
12秒前
gyh完成签到 ,获得积分10
15秒前
小小邱完成签到,获得积分10
16秒前
研小白发布了新的文献求助20
17秒前
希望天下0贩的0应助Bruce采纳,获得10
18秒前
土豆丝完成签到,获得积分20
18秒前
小马甲应助清森采纳,获得10
20秒前
20秒前
鸿儒发布了新的文献求助10
20秒前
笑C发布了新的文献求助10
21秒前
Ripples完成签到 ,获得积分10
23秒前
佳佳发布了新的文献求助10
24秒前
小张完成签到,获得积分10
25秒前
26秒前
完美世界应助木槿采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
桐桐应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得10
28秒前
CipherSage应助科研通管家采纳,获得10
28秒前
28秒前
852应助科研通管家采纳,获得10
28秒前
。。。完成签到,获得积分10
29秒前
66666完成签到 ,获得积分20
31秒前
Bruce发布了新的文献求助10
31秒前
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314174
求助须知:如何正确求助?哪些是违规求助? 2946559
关于积分的说明 8530555
捐赠科研通 2622218
什么是DOI,文献DOI怎么找? 1434412
科研通“疑难数据库(出版商)”最低求助积分说明 665277
邀请新用户注册赠送积分活动 650838