材料科学
催化作用
光催化
涂层
甲苯
煅烧
光热治疗
化学工程
吸附
辐照
复合材料
纳米技术
化学
有机化学
工程类
物理
核物理学
作者
Jian Wang,Xingxing Gao,Yajun Wang,Sheng Wang,Zhiwen Xie,Binzheng Yang,Zhiguo Zhang,Zhuang Yang,Lei Kang,Wenqing Yao
标识
DOI:10.1016/j.apcatb.2022.121789
摘要
In this study, the integrated core-double-shell structures of C@MnO@TiO2 (abbreviation CMT) composites have been rationally designed and fabricated utilizing of carbon spheres as frameworks and reducing agents, which were introduced a TiO2 outer shell on MnO2 @C nanospheres by sol-gel coating and subsequent in-situ calcination reduction process. Owing to the well-defined structures, the as-prepared CMT composites can efficiently convert full-light into heat energy, achieve the rapid adsorption and enrichment of toluene and motivate the synergistic effects of photocatalysis of TiO2 and full-light driven thermalcatalysis of MnOx @C, resulting in the significantly enhanced photothermal catalytic performance of toluene oxidation upon UV-Vis-IR irradiation of Xe lamp. Furthermore, the strategy on changing the molar ratio of Mn/Ti among CMT composites can not only act as important role in the control of the coating thickness of outer layer TiO2, surface morphologies and physicochemical properties within a certain range, but also yield opportunities to adjust photothermal synergistic effects between ternary components among CMT composites. Compared with other CMT composites, CMT-3 samples with a suitable Mn/Ti molar ratio of 0.4 exhibited much higher photothermal catalytic activity including a high toluene removal efficiency and CO2 production rate (99.1 % within 90 min and 102.5 μmol.g−1.min−1, respectively), which were attributed to its optimized coating thickness of outer layer TiO2, and the optimal distribution ratio of surface oxygen species (Oads/Olatt/Owat) and electronic valence of Mn species (Mn2+/Mn3+/Mn4+). The possible mechanism for photothermal catalytic oxidation of toluene over CMT composites was also discussed in terms of the special core-double-shell structure, matching electronic band levels and photothermal synergistic effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI