The Role of Water Network Chemistry in Proteins: A Structural Bioinformatics Perspective in Drug Discovery and Development

药物发现 数据科学 分子 相关性(法律) 计算机科学 计算生物学 瓶颈 蛋白质配体 水化学 小分子 化学 纳米技术 生物 材料科学 生物化学 环境化学 有机化学 政治学 法学 嵌入式系统
作者
M. Elizabeth Sobhia,Ketan Ghosh,Siva Kumar,Srikanth Sivangula,Kapil Laddha,Sonia Kumari,Harish Kumar
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:22 (20): 1636-1653 被引量:2
标识
DOI:10.2174/1568026622666220726114407
摘要

Although water is regarded as a simple molecule, its ability to create hydrogen bonds makes it a highly complex molecule that is crucial to molecular biology. Water molecules are extremely small and are made up of two different types of atoms, each of which plays a particular role in biological processes. Despite substantial research, understanding the hydration chemistry of protein-ligand complexes remains difficult. Researchers are working on harnessing water molecules to solve unsolved challenges due to the development of computer technologies.The goal of this review is to highlight the relevance of water molecules in protein environments, as well as to demonstrate how the lack of well-resolved crystal structures of proteins functions as a bottleneck in developing molecules that target critical therapeutic targets. In addition, the purpose of this article is to provide a common platform for researchers to consider numerous aspects connected to water molecules.Considering structure-based drug design, this review will make readers aware of the different aspects related to water molecules. It will provide an amalgamation of information related to the protein environment, linking the thermodynamic fingerprints of water with key therapeutic targets. It also demonstrates that a large number of computational tools are available to study the water network chemistry with the surrounding protein environment. It also emphasizes the need for computational methods in addressing gaps left by a poorly resolved crystallized protein structure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Song发布了新的文献求助10
刚刚
1秒前
小马甲应助超帅的凌翠采纳,获得10
3秒前
3秒前
呆萌笑晴完成签到,获得积分10
3秒前
5秒前
fffffffq完成签到,获得积分10
6秒前
6秒前
8秒前
柚子关注了科研通微信公众号
8秒前
顾家老攻完成签到,获得积分10
9秒前
mmssdd发布了新的文献求助10
10秒前
共享精神应助smj采纳,获得10
10秒前
曾经的刺猬完成签到,获得积分10
12秒前
12秒前
charcy完成签到,获得积分10
13秒前
14秒前
吲哚好呀发布了新的文献求助10
15秒前
kai完成签到,获得积分10
16秒前
lilli完成签到,获得积分10
16秒前
16秒前
王帅完成签到,获得积分10
17秒前
素和姣姣发布了新的文献求助10
17秒前
haoaaa发布了新的文献求助30
17秒前
Wenpandaen完成签到,获得积分10
19秒前
bubble完成签到,获得积分10
19秒前
科研pig发布了新的文献求助10
19秒前
mmssdd完成签到,获得积分10
21秒前
思源应助wzjs采纳,获得10
21秒前
21秒前
cwy完成签到,获得积分10
23秒前
iNk应助曾经的刺猬采纳,获得10
24秒前
kk_1315完成签到,获得积分10
24秒前
lime完成签到,获得积分10
25秒前
25秒前
26秒前
ttt完成签到,获得积分10
27秒前
思源应助吲哚好呀采纳,获得10
28秒前
李爱国应助吲哚好呀采纳,获得10
28秒前
量贩拉菲完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825