Attention-driven Graph Clustering Network

聚类分析 计算机科学 图形 特征学习 人工智能 保险丝(电气) 判别式 自编码 特征(语言学) 模式识别(心理学) 编码器 数据挖掘 深度学习 理论计算机科学 工程类 电气工程 哲学 操作系统 语言学
作者
Zhihao Peng,Hui Liu,Yuheng Jia,Junhui Hou
标识
DOI:10.1145/3474085.3475276
摘要

The combination of the traditional convolutional network (i.e., an auto-encoder) and the graph convolutional network has attracted much attention in clustering, in which the auto-encoder extracts the node attribute feature and the graph convolutional network captures the topological graph feature. However, the existing works (i) lack a flexible combination mechanism to adaptively fuse those two kinds of features for learning the discriminative representation and (ii) overlook the multi-scale information embedded at different layers for subsequent cluster assignment, leading to inferior clustering results. To this end, we propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN). Specifically, AGCN exploits a heterogeneity-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature. Moreover, AGCN develops a scale-wise fusion module to adaptively aggregate the multi-scale features embedded at different layers. Based on a unified optimization framework, AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion. Compared with the existing deep clustering methods, our method is more flexible and effective since it comprehensively considers the numerous and discriminative information embedded in the network and directly produces the clustering results. Extensive quantitative and qualitative results on commonly used benchmark datasets validate that our AGCN consistently outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuyd90发布了新的文献求助10
1秒前
阔达之卉发布了新的文献求助10
1秒前
薇夜发布了新的文献求助100
2秒前
我是老大应助轻松妙柏采纳,获得10
2秒前
3秒前
zplease发布了新的文献求助10
3秒前
6秒前
熊孩子发布了新的文献求助10
7秒前
dylaner完成签到,获得积分10
7秒前
Akim应助努力搞科研采纳,获得30
7秒前
Akim应助静越采纳,获得10
8秒前
8秒前
英姑应助小篮子采纳,获得10
8秒前
longlong完成签到,获得积分20
9秒前
悦耳小霜完成签到,获得积分10
9秒前
expuery完成签到,获得积分10
9秒前
李以苦发布了新的文献求助30
9秒前
嘻嘻发布了新的文献求助10
13秒前
隐形曼青应助小猪采纳,获得10
15秒前
wuyd90完成签到,获得积分20
16秒前
开放大开完成签到,获得积分20
17秒前
18秒前
fan发布了新的文献求助10
18秒前
20秒前
樊舒豪发布了新的文献求助10
20秒前
vanHaren完成签到,获得积分10
21秒前
JamesPei应助祯果粒采纳,获得10
22秒前
4所得税d关注了科研通微信公众号
22秒前
22秒前
22秒前
爱吃鳕贝的小熊维尼完成签到,获得积分10
24秒前
24秒前
雪雪儿发布了新的文献求助10
26秒前
fan完成签到,获得积分20
27秒前
vanHaren发布了新的文献求助10
27秒前
WWF完成签到,获得积分20
27秒前
叶远望完成签到,获得积分10
28秒前
bob完成签到,获得积分10
29秒前
不是一个名字完成签到,获得积分10
30秒前
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341