光合作用
气孔导度
不规则嗜根菌
蒸腾作用
补偿点
叶绿素荧光
生物
园艺
植物
光合效率
光抑制
光系统II
共生
遗传学
细菌
丛枝菌根
作者
Simiao Sun,Yuhan Feng,Guodong Huang,Xu Zhao,Fuqiang Song
标识
DOI:10.1016/j.envpol.2022.120309
摘要
Arbuscular mycorrhizal fungi (AMF) are widespread and specialized soil symbiotic fungi, and the establishment of their symbiotic system is of great importance for adversity adaptation. To reveal the growth and photosynthetic characteristics of AMF-crop symbionts in response to heavy metal stress, this experiment investigated the effects of Rhizophagus irregularis (Ri) inoculation on the growth, photosynthetic gas exchange parameters, and chlorophyll fluorescence characteristics of hemp (Cannabis sativa L.) at a Cd concentration of 80 mg/kg. The results showed that (1) under Cd stress, the biomass of each plant structure in the Ri treatment was significantly higher than that in the noninoculation treatment (P < 0.05); (2) under Cd stress, the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency, apparent electron transport rate and photochemical quenching coefficient of the Ri inoculation group reached a maximum, with increases ranging from 1% to 28%; (3) inoculation of Ri significantly reduced Cd enrichment in leaves, which in turn significantly increased the transpiration rate, stomatal conductance, electron transfer rate, net photosynthetic rate and photosynthetic intensity, protecting PSII (P < 0.05); and (4) by measuring the light response curves of different treatments, the light saturation points of hemp inoculated with the Ri treatment reached 1448.4 μmol/m2/s, and the optical compensation point reached 24.0 μmol/m2/s under Cd stress. The Ri-hemp symbiont demonstrated high adaptability to weak light and high utilization efficiency of strong light under Cd stress. Our study showed that Ri-hemp symbiosis improves adaptation to Cd stress and promotes plant growth by regulating the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of plants. The Ri-hemp symbiosis is a promising technology for improving the productivity of Cd-contaminated soil.
科研通智能强力驱动
Strongly Powered by AbleSci AI