马尔科夫蒙特卡洛
自回归模型
计算机科学
贝叶斯概率
计量经济学
动态贝叶斯网络
同性恋
马尔可夫链
贝叶斯推理
鉴定(生物学)
变阶贝叶斯网络
机器学习
人工智能
数学
生物
植物
组合数学
出处
期刊:Political Science Research and Methods
[Cambridge University Press]
日期:2022-09-28
卷期号:11 (4): 823-837
摘要
Abstract This paper proposes a Bayesian multilevel spatio-temporal model with a time-varying spatial autoregressive coefficient to estimate temporally heterogeneous network interdependence. To tackle the classic reflection problem, we use multiple factors to control for confounding caused by latent homophily and common exposures. We develop a Markov Chain Monte Carlo algorithm to estimate parameters and adopt Bayesian shrinkage to determine the number of factors. Tests on simulated and empirical data show that the proposed model improves identification of network interdependence and is robust to misspecification. Our method is applicable to various types of networks and provides a simpler and more flexible alternative to coevolution models.
科研通智能强力驱动
Strongly Powered by AbleSci AI