已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

WSAMF-Net: Wavelet Spatial Attention-Based MultiStream Feedback Network for Single Image Dehazing

计算机科学 人工智能 保险丝(电气) 特征(语言学) 小波 模式识别(心理学) 领域(数学分析) 图像(数学) 计算机视觉 数学 语言学 电气工程 工程类 数学分析 哲学
作者
Xibin Song,Dingfu Zhou,Wei Li,Haodong Ding,Yuchao Dai,Liangjun Zhang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (2): 575-588 被引量:23
标识
DOI:10.1109/tcsvt.2022.3207020
摘要

Single image-based dehazing has achieved remarkable progress with the development of deep learning technologies. End-to-end neural networks have been proposed to learn a direct hazy-to-clear image translation to recover the clear structures and edges cues from the hazy inputs. However, the frequency domain information is explored insufficiently and lots of intermediate structure and texture related cues of current dehazing networks are ignored, which limits the performances of current approaches. To handle these limitations mentioned above, a wavelet spatial attention based multi-stream feedback network (WSAMF-Net) is proposed for effective single image dehazing. Specifically, the proposed wavelet spatial attention utilizes both frequency-domain and spatial-domain information to enhance the extracted features for better structures and edges. Meanwhile, an enhanced multi-stream based cross feature fusion strategy, including vertical and horizontal attentions, is proposed to reweight and fuse the intermediate features of each stream to acquire more meaningful aggregated features, while the weight sharing strategy is used to achieve a good trade-off between performance and parameters. Besides, feedback mechanism is also designed to provide strong reconstruction ability. Furthermore, we propose a critical real-world industrial dataset (IDS) with images captured in real-world industrial quarry scenarios for research uses. Extensive experiments on various benchmarking datasets, including both synthetic and real-world datasets, demonstrate the superiority of our WSAMF-Net over state-of-the-art single image dehazing methods. The IDS dataset will be available at https://github.com/XBSong/IDS-Datasethttps://github.com/XBSong/IDS-Dataset .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
传奇3应助柳叶小弯刀采纳,获得10
2秒前
快乐的科研人完成签到,获得积分10
4秒前
4秒前
Jackie发布了新的文献求助10
5秒前
wpl完成签到,获得积分10
6秒前
Steven发布了新的文献求助10
8秒前
宋仔仔爱吃糖完成签到,获得积分10
8秒前
8秒前
朱文韬完成签到,获得积分10
9秒前
tuanheqi应助杳霭流玉采纳,获得30
11秒前
Jackie发布了新的文献求助10
20秒前
自由访烟发布了新的文献求助30
21秒前
23秒前
香蕉觅云应助天牛不说话采纳,获得10
23秒前
24秒前
25秒前
wpl发布了新的文献求助10
27秒前
包容的狗发布了新的文献求助10
28秒前
31秒前
清爽语柳发布了新的文献求助10
32秒前
33秒前
35秒前
35秒前
研友_ZGRvon完成签到,获得积分10
37秒前
CipherSage应助Yfufu采纳,获得10
38秒前
小樊同学完成签到,获得积分10
38秒前
39秒前
自由访烟发布了新的文献求助10
40秒前
40秒前
李健的小迷弟应助王大萌采纳,获得10
41秒前
科研通AI2S应助完美的海秋采纳,获得10
41秒前
Jackie发布了新的文献求助10
42秒前
43秒前
小樊同学发布了新的文献求助10
43秒前
慕青应助海豚的盆友采纳,获得10
44秒前
99668完成签到,获得积分10
46秒前
48秒前
上官若男应助小樊同学采纳,获得10
49秒前
50秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244560
求助须知:如何正确求助?哪些是违规求助? 2888286
关于积分的说明 8252263
捐赠科研通 2556694
什么是DOI,文献DOI怎么找? 1385172
科研通“疑难数据库(出版商)”最低求助积分说明 650037
邀请新用户注册赠送积分活动 626193