PAV-SOD: A New Task towards Panoramic Audiovisual Saliency Detection

计算机科学 人工智能 计算机视觉 分割 水准点(测量) 任务(项目管理) 对象(语法) 卷积神经网络 模式识别(心理学) 大地测量学 经济 管理 地理
作者
Yi Zhang,Fang-Yi Chao,Wassim Hamidouche,Olivier Déforges
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (3): 1-26 被引量:3
标识
DOI:10.1145/3565267
摘要

Object-level audiovisual saliency detection in 360° panoramic real-life dynamic scenes is important for exploring and modeling human perception in immersive environments, also for aiding the development of virtual, augmented, and mixed reality applications in fields such as education, social network, entertainment, and training. To this end, we propose a new task, p anoramic a udio v isual s alient o bject d etection, ( PAV-SOD 1 ), which aims to segment the objects grasping most of the human attention in 360° panoramic videos reflecting real-life daily scenes. To support the task, we collect PAVS10K , the first p anoramic video dataset for a udio v isual s alient object detection, which consists of 67 4K-resolution equirectangular videos with per-video labels including hierarchical scene categories and associated attributes depicting specific challenges for conducting PAV-SOD , and 10,465 uniformly sampled video frames with manually annotated object-level and instance-level pixel-wise masks. The coarse-to-fine annotations enable multi-perspective analysis regarding PAV-SOD modeling. We further systematically benchmark 13 state-of-the-art salient object detection (SOD)/video object segmentation (VOS) methods based on our PAVS10K . Besides, we propose a new baseline network, which takes advantage of both visual and audio cues of 360° video frames by using a new conditional variational auto-encoder (CVAE). Our C VAE-based a udio v isual net work, namely, CAV-Net , consists of a spatial-temporal visual segmentation network, a convolutional audio-encoding network, and audiovisual distribution estimation modules. As a result, our CAV-Net outperforms all competing models and is able to estimate the aleatoric uncertainties within PAVS10K . With extensive experimental results, we gain several findings about PAV-SOD challenges and insights towards PAV-SOD model interpretability. We hope that our work could serve as a starting point for advancing SOD towards immersive media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斐乐完成签到,获得积分10
1秒前
科研通AI5应助过时的安蕾采纳,获得10
1秒前
佟蓝血发布了新的文献求助10
2秒前
2秒前
2秒前
无花果应助明亮淇采纳,获得50
4秒前
动漫大师发布了新的文献求助10
5秒前
科研通AI5应助一个采纳,获得10
5秒前
5秒前
彭于晏应助hgzz采纳,获得10
5秒前
5秒前
6秒前
朴素访琴完成签到 ,获得积分10
7秒前
kk发布了新的文献求助10
7秒前
辛勤的乌发布了新的文献求助10
9秒前
hqq发布了新的文献求助10
10秒前
小二郎应助lucas采纳,获得10
10秒前
11秒前
mfr发布了新的文献求助10
12秒前
14秒前
Lucas应助辉hui采纳,获得10
15秒前
Brave发布了新的文献求助10
15秒前
kk完成签到,获得积分10
16秒前
科研白白完成签到,获得积分10
16秒前
lve完成签到,获得积分10
16秒前
可乐加冰完成签到,获得积分10
18秒前
18秒前
科研通AI5应助辛勤的乌采纳,获得10
19秒前
田様应助士心采纳,获得10
19秒前
无语完成签到,获得积分10
19秒前
ding应助zfy采纳,获得10
20秒前
20秒前
21秒前
科研通AI2S应助彼得大帝采纳,获得10
22秒前
Ldx发布了新的文献求助10
23秒前
wanci应助Jun采纳,获得10
23秒前
24秒前
完美世界应助袁建波采纳,获得10
24秒前
25秒前
科研通AI5应助无语采纳,获得10
25秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712336
求助须知:如何正确求助?哪些是违规求助? 3260454
关于积分的说明 9914201
捐赠科研通 2973895
什么是DOI,文献DOI怎么找? 1630801
邀请新用户注册赠送积分活动 773655
科研通“疑难数据库(出版商)”最低求助积分说明 744366