PAV-SOD: A New Task towards Panoramic Audiovisual Saliency Detection

计算机科学 人工智能 计算机视觉 分割 水准点(测量) 任务(项目管理) 对象(语法) 卷积神经网络 模式识别(心理学) 管理 大地测量学 经济 地理
作者
Yi Zhang,Fang-Yi Chao,Wassim Hamidouche,Olivier Déforges
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (3): 1-26 被引量:3
标识
DOI:10.1145/3565267
摘要

Object-level audiovisual saliency detection in 360° panoramic real-life dynamic scenes is important for exploring and modeling human perception in immersive environments, also for aiding the development of virtual, augmented, and mixed reality applications in fields such as education, social network, entertainment, and training. To this end, we propose a new task, p anoramic a udio v isual s alient o bject d etection, ( PAV-SOD 1 ), which aims to segment the objects grasping most of the human attention in 360° panoramic videos reflecting real-life daily scenes. To support the task, we collect PAVS10K , the first p anoramic video dataset for a udio v isual s alient object detection, which consists of 67 4K-resolution equirectangular videos with per-video labels including hierarchical scene categories and associated attributes depicting specific challenges for conducting PAV-SOD , and 10,465 uniformly sampled video frames with manually annotated object-level and instance-level pixel-wise masks. The coarse-to-fine annotations enable multi-perspective analysis regarding PAV-SOD modeling. We further systematically benchmark 13 state-of-the-art salient object detection (SOD)/video object segmentation (VOS) methods based on our PAVS10K . Besides, we propose a new baseline network, which takes advantage of both visual and audio cues of 360° video frames by using a new conditional variational auto-encoder (CVAE). Our C VAE-based a udio v isual net work, namely, CAV-Net , consists of a spatial-temporal visual segmentation network, a convolutional audio-encoding network, and audiovisual distribution estimation modules. As a result, our CAV-Net outperforms all competing models and is able to estimate the aleatoric uncertainties within PAVS10K . With extensive experimental results, we gain several findings about PAV-SOD challenges and insights towards PAV-SOD model interpretability. We hope that our work could serve as a starting point for advancing SOD towards immersive media.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MetaMysteria完成签到,获得积分10
1秒前
test_20251231发布了新的文献求助50
3秒前
科研通AI2S应助123456采纳,获得10
3秒前
3秒前
胡蝶完成签到 ,获得积分10
5秒前
无情的井完成签到,获得积分10
5秒前
故事细腻完成签到 ,获得积分10
6秒前
tangz发布了新的文献求助10
6秒前
张姚发布了新的文献求助10
6秒前
完美世界应助XIEQ采纳,获得10
7秒前
whoKnows应助Tom采纳,获得20
9秒前
cc发布了新的文献求助10
10秒前
bkagyin应助科研通管家采纳,获得10
12秒前
1101592875应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得30
12秒前
大龙哥886应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得30
12秒前
宅多点应助科研通管家采纳,获得10
12秒前
1101592875应助科研通管家采纳,获得10
12秒前
12秒前
shhoing应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
雨姐科研应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Z1987完成签到,获得积分10
13秒前
宅多点应助科研通管家采纳,获得10
13秒前
雨姐科研应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
arizaki7应助科研通管家采纳,获得10
13秒前
大龙哥886应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866