Remaining useful life prediction of rolling bearing under limited data based on adaptive time-series feature window and multi-step ahead strategy

系列(地层学) 计算机科学 窗口(计算) 特征(语言学) 时间序列 模式识别(心理学) 方位(导航) 数据挖掘 人工智能 算法 机器学习 古生物学 语言学 哲学 生物 操作系统
作者
Weili Kong,Hai Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:129: 109630-109630 被引量:19
标识
DOI:10.1016/j.asoc.2022.109630
摘要

Predicting the remaining useful life (RUL) of rolling bearings can effectively prevent the breakdown of rotating machinery systems and catastrophic accidents. Most existing RUL prediction methods require massive run-to-failure datasets for modeling. However, it is difficult to obtain these rolling bearing datasets, and for newly or recently deployed rolling bearings, the degradation data are limited with no failure data. Meanwhile, the distribution difference of degradation data of bearings under different working conditions is great, and it is a challenge to employ existing methods to predict RUL. According to the investigation, the health indicators of rolling bearings related to RUL increase exponentially with time. Motivated by this, a novel rolling bearing RUL prediction approach under limited data is proposed in this study. First, a first prediction time (FPT) identification method is developed to obtain the appropriate FPT. Then, the degradation factor is derived mathematically and used to adaptively compress the time-series feature window to better capture the degradation trends of rolling bearings. Subsequently, a stacked bidirectional long short-term memory network (SBiLSTM) is designed to predict and smoothen sequential data. Combined with the degradation factor and SBiLSTM, a multi-step ahead rolling prediction method is presented to predict RUL. Finally, several experiments are conducted on rolling bearings, and the mean absolute percentage error of the proposed method for three representative rolling bearings are 6.77%, 18.92%, and 8.95%, which are superior to other methods. Accordingly, this study contributes to revealing future degradation trends of rolling bearings mathematically, and providing a new idea for implementing other mechanical system prognostics under limited data. • Rolling bearing RUL prediction under limited data is proposed. • Time-series feature window is developed. • Multi-step ahead rolling prediction is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cici完成签到 ,获得积分10
9秒前
俭朴的芝麻完成签到,获得积分10
18秒前
吱吱吱完成签到 ,获得积分10
19秒前
医路微光完成签到,获得积分10
21秒前
Guangquan_Zhang完成签到,获得积分10
22秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
蛇從革应助科研通管家采纳,获得30
27秒前
尊敬依珊完成签到 ,获得积分10
27秒前
田様应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
不倦应助科研通管家采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
猪猪hero发布了新的文献求助10
29秒前
xhd183完成签到 ,获得积分10
37秒前
无语完成签到,获得积分10
39秒前
高泽平完成签到,获得积分10
40秒前
hzh完成签到 ,获得积分10
40秒前
活力的石头完成签到 ,获得积分10
40秒前
41秒前
42秒前
脑洞疼应助奥莉奥采纳,获得30
44秒前
CQ完成签到 ,获得积分10
45秒前
45秒前
追梦完成签到,获得积分10
46秒前
夜倾心完成签到,获得积分10
49秒前
高泽平发布了新的文献求助10
50秒前
Hello应助云间山很困采纳,获得10
57秒前
mdJdm完成签到 ,获得积分10
57秒前
tangxf921完成签到,获得积分10
58秒前
跳跃馒头完成签到 ,获得积分10
1分钟前
April完成签到 ,获得积分10
1分钟前
杨杨杨完成签到,获得积分10
1分钟前
1分钟前
1分钟前
woshibyu完成签到 ,获得积分20
1分钟前
1分钟前
净心完成签到 ,获得积分10
1分钟前
简奥斯汀完成签到 ,获得积分10
1分钟前
tangxf921发布了新的文献求助10
1分钟前
小点完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304233
求助须知:如何正确求助?哪些是违规求助? 4450831
关于积分的说明 13849829
捐赠科研通 4337757
什么是DOI,文献DOI怎么找? 2381620
邀请新用户注册赠送积分活动 1376593
关于科研通互助平台的介绍 1343689