Remaining useful life prediction of rolling bearing under limited data based on adaptive time-series feature window and multi-step ahead strategy

系列(地层学) 计算机科学 窗口(计算) 特征(语言学) 时间序列 模式识别(心理学) 方位(导航) 数据挖掘 人工智能 算法 机器学习 古生物学 语言学 哲学 生物 操作系统
作者
Weili Kong,Hai Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:129: 109630-109630 被引量:19
标识
DOI:10.1016/j.asoc.2022.109630
摘要

Predicting the remaining useful life (RUL) of rolling bearings can effectively prevent the breakdown of rotating machinery systems and catastrophic accidents. Most existing RUL prediction methods require massive run-to-failure datasets for modeling. However, it is difficult to obtain these rolling bearing datasets, and for newly or recently deployed rolling bearings, the degradation data are limited with no failure data. Meanwhile, the distribution difference of degradation data of bearings under different working conditions is great, and it is a challenge to employ existing methods to predict RUL. According to the investigation, the health indicators of rolling bearings related to RUL increase exponentially with time. Motivated by this, a novel rolling bearing RUL prediction approach under limited data is proposed in this study. First, a first prediction time (FPT) identification method is developed to obtain the appropriate FPT. Then, the degradation factor is derived mathematically and used to adaptively compress the time-series feature window to better capture the degradation trends of rolling bearings. Subsequently, a stacked bidirectional long short-term memory network (SBiLSTM) is designed to predict and smoothen sequential data. Combined with the degradation factor and SBiLSTM, a multi-step ahead rolling prediction method is presented to predict RUL. Finally, several experiments are conducted on rolling bearings, and the mean absolute percentage error of the proposed method for three representative rolling bearings are 6.77%, 18.92%, and 8.95%, which are superior to other methods. Accordingly, this study contributes to revealing future degradation trends of rolling bearings mathematically, and providing a new idea for implementing other mechanical system prognostics under limited data. • Rolling bearing RUL prediction under limited data is proposed. • Time-series feature window is developed. • Multi-step ahead rolling prediction is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
red发布了新的文献求助30
5秒前
5秒前
怡然的扬发布了新的文献求助10
6秒前
Tiggerzhtw完成签到,获得积分20
6秒前
6秒前
小康发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
黑米粥发布了新的文献求助10
9秒前
Lucas应助涔雨采纳,获得10
10秒前
小学生发布了新的文献求助10
10秒前
老温发布了新的文献求助10
12秒前
小康发布了新的文献求助10
12秒前
小康发布了新的文献求助10
12秒前
hiter发布了新的文献求助10
13秒前
大大泡泡完成签到,获得积分10
13秒前
明亮的落地窗完成签到,获得积分10
14秒前
科研通AI6应助red采纳,获得30
14秒前
15秒前
Tiggerzhtw发布了新的文献求助10
15秒前
18秒前
18秒前
19秒前
19秒前
俭朴晓凡应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
852应助科研通管家采纳,获得10
20秒前
BowieHuang应助科研通管家采纳,获得10
20秒前
yao应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
六月疏雨应助科研通管家采纳,获得10
20秒前
上官若男应助科研通管家采纳,获得30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560463
求助须知:如何正确求助?哪些是违规求助? 4645717
关于积分的说明 14675923
捐赠科研通 4586840
什么是DOI,文献DOI怎么找? 2516564
邀请新用户注册赠送积分活动 1490169
关于科研通互助平台的介绍 1461037