亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remaining useful life prediction of rolling bearing under limited data based on adaptive time-series feature window and multi-step ahead strategy

系列(地层学) 计算机科学 窗口(计算) 特征(语言学) 时间序列 模式识别(心理学) 方位(导航) 数据挖掘 人工智能 算法 机器学习 古生物学 语言学 哲学 生物 操作系统
作者
Weili Kong,Hai Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:129: 109630-109630 被引量:19
标识
DOI:10.1016/j.asoc.2022.109630
摘要

Predicting the remaining useful life (RUL) of rolling bearings can effectively prevent the breakdown of rotating machinery systems and catastrophic accidents. Most existing RUL prediction methods require massive run-to-failure datasets for modeling. However, it is difficult to obtain these rolling bearing datasets, and for newly or recently deployed rolling bearings, the degradation data are limited with no failure data. Meanwhile, the distribution difference of degradation data of bearings under different working conditions is great, and it is a challenge to employ existing methods to predict RUL. According to the investigation, the health indicators of rolling bearings related to RUL increase exponentially with time. Motivated by this, a novel rolling bearing RUL prediction approach under limited data is proposed in this study. First, a first prediction time (FPT) identification method is developed to obtain the appropriate FPT. Then, the degradation factor is derived mathematically and used to adaptively compress the time-series feature window to better capture the degradation trends of rolling bearings. Subsequently, a stacked bidirectional long short-term memory network (SBiLSTM) is designed to predict and smoothen sequential data. Combined with the degradation factor and SBiLSTM, a multi-step ahead rolling prediction method is presented to predict RUL. Finally, several experiments are conducted on rolling bearings, and the mean absolute percentage error of the proposed method for three representative rolling bearings are 6.77%, 18.92%, and 8.95%, which are superior to other methods. Accordingly, this study contributes to revealing future degradation trends of rolling bearings mathematically, and providing a new idea for implementing other mechanical system prognostics under limited data. • Rolling bearing RUL prediction under limited data is proposed. • Time-series feature window is developed. • Multi-step ahead rolling prediction is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangermazi完成签到,获得积分0
刚刚
爱吃大米饭完成签到 ,获得积分10
1秒前
7秒前
31秒前
优秀棒棒糖完成签到 ,获得积分10
40秒前
113完成签到 ,获得积分10
41秒前
馆长举报物质尽头求助涉嫌违规
48秒前
我是熊大关注了科研通微信公众号
1分钟前
1分钟前
归尘发布了新的文献求助10
1分钟前
坚果发布了新的文献求助10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得30
1分钟前
我是熊大完成签到,获得积分10
2分钟前
章鱼完成签到,获得积分10
2分钟前
2分钟前
2分钟前
童话发布了新的文献求助10
2分钟前
CipherSage应助童话采纳,获得10
2分钟前
2分钟前
童话完成签到,获得积分10
2分钟前
2分钟前
3分钟前
归尘发布了新的文献求助10
3分钟前
3分钟前
不器完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Krim完成签到 ,获得积分0
4分钟前
馆长举报sean求助涉嫌违规
4分钟前
lan完成签到 ,获得积分10
5分钟前
5分钟前
梅赛德斯奔驰完成签到,获得积分10
5分钟前
文文发布了新的文献求助10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983930
求助须知:如何正确求助?哪些是违规求助? 4234981
关于积分的说明 13189593
捐赠科研通 4027452
什么是DOI,文献DOI怎么找? 2203231
邀请新用户注册赠送积分活动 1215420
关于科研通互助平台的介绍 1132656