Remaining useful life prediction of rolling bearing under limited data based on adaptive time-series feature window and multi-step ahead strategy

系列(地层学) 计算机科学 窗口(计算) 特征(语言学) 时间序列 模式识别(心理学) 方位(导航) 数据挖掘 人工智能 算法 机器学习 古生物学 语言学 哲学 生物 操作系统
作者
Weili Kong,Hai Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:129: 109630-109630 被引量:19
标识
DOI:10.1016/j.asoc.2022.109630
摘要

Predicting the remaining useful life (RUL) of rolling bearings can effectively prevent the breakdown of rotating machinery systems and catastrophic accidents. Most existing RUL prediction methods require massive run-to-failure datasets for modeling. However, it is difficult to obtain these rolling bearing datasets, and for newly or recently deployed rolling bearings, the degradation data are limited with no failure data. Meanwhile, the distribution difference of degradation data of bearings under different working conditions is great, and it is a challenge to employ existing methods to predict RUL. According to the investigation, the health indicators of rolling bearings related to RUL increase exponentially with time. Motivated by this, a novel rolling bearing RUL prediction approach under limited data is proposed in this study. First, a first prediction time (FPT) identification method is developed to obtain the appropriate FPT. Then, the degradation factor is derived mathematically and used to adaptively compress the time-series feature window to better capture the degradation trends of rolling bearings. Subsequently, a stacked bidirectional long short-term memory network (SBiLSTM) is designed to predict and smoothen sequential data. Combined with the degradation factor and SBiLSTM, a multi-step ahead rolling prediction method is presented to predict RUL. Finally, several experiments are conducted on rolling bearings, and the mean absolute percentage error of the proposed method for three representative rolling bearings are 6.77%, 18.92%, and 8.95%, which are superior to other methods. Accordingly, this study contributes to revealing future degradation trends of rolling bearings mathematically, and providing a new idea for implementing other mechanical system prognostics under limited data. • Rolling bearing RUL prediction under limited data is proposed. • Time-series feature window is developed. • Multi-step ahead rolling prediction is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Aprial完成签到,获得积分10
1秒前
2秒前
kiminonawa发布了新的文献求助10
2秒前
2秒前
无极微光应助辣辣采纳,获得20
4秒前
5秒前
Cradoc完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
小二郎应助我笑着童年采纳,获得20
10秒前
Jasper应助单身的乐瑶采纳,获得10
10秒前
11秒前
醉山完成签到,获得积分20
13秒前
13秒前
asdf应助小白果果采纳,获得10
14秒前
独特雨灵完成签到,获得积分10
14秒前
唠叨的胡萝卜完成签到,获得积分10
14秒前
14秒前
14秒前
阔达惜天完成签到,获得积分10
21秒前
22秒前
橓厉发布了新的文献求助10
24秒前
怪味肉松饼完成签到,获得积分10
25秒前
asdf应助huanir99采纳,获得10
26秒前
呦呦切克闹完成签到,获得积分10
26秒前
深情安青应助小枣采纳,获得10
27秒前
大俊哥发布了新的文献求助10
28秒前
李健应助兮兮采纳,获得10
28秒前
pretty发布了新的文献求助10
28秒前
深情安青应助cxy采纳,获得10
28秒前
29秒前
周益浩发布了新的文献求助10
29秒前
hobowei完成签到 ,获得积分10
29秒前
30秒前
科研通AI6应助Steven采纳,获得20
33秒前
wang完成签到,获得积分10
34秒前
闪亮的皮蛋完成签到,获得积分10
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511461
求助须知:如何正确求助?哪些是违规求助? 4606072
关于积分的说明 14497389
捐赠科研通 4541296
什么是DOI,文献DOI怎么找? 2488463
邀请新用户注册赠送积分活动 1470484
关于科研通互助平台的介绍 1442866