亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remaining useful life prediction of rolling bearing under limited data based on adaptive time-series feature window and multi-step ahead strategy

系列(地层学) 计算机科学 窗口(计算) 特征(语言学) 时间序列 模式识别(心理学) 方位(导航) 数据挖掘 人工智能 算法 机器学习 语言学 生物 操作系统 哲学 古生物学
作者
Weili Kong,Hai Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:129: 109630-109630 被引量:19
标识
DOI:10.1016/j.asoc.2022.109630
摘要

Predicting the remaining useful life (RUL) of rolling bearings can effectively prevent the breakdown of rotating machinery systems and catastrophic accidents. Most existing RUL prediction methods require massive run-to-failure datasets for modeling. However, it is difficult to obtain these rolling bearing datasets, and for newly or recently deployed rolling bearings, the degradation data are limited with no failure data. Meanwhile, the distribution difference of degradation data of bearings under different working conditions is great, and it is a challenge to employ existing methods to predict RUL. According to the investigation, the health indicators of rolling bearings related to RUL increase exponentially with time. Motivated by this, a novel rolling bearing RUL prediction approach under limited data is proposed in this study. First, a first prediction time (FPT) identification method is developed to obtain the appropriate FPT. Then, the degradation factor is derived mathematically and used to adaptively compress the time-series feature window to better capture the degradation trends of rolling bearings. Subsequently, a stacked bidirectional long short-term memory network (SBiLSTM) is designed to predict and smoothen sequential data. Combined with the degradation factor and SBiLSTM, a multi-step ahead rolling prediction method is presented to predict RUL. Finally, several experiments are conducted on rolling bearings, and the mean absolute percentage error of the proposed method for three representative rolling bearings are 6.77%, 18.92%, and 8.95%, which are superior to other methods. Accordingly, this study contributes to revealing future degradation trends of rolling bearings mathematically, and providing a new idea for implementing other mechanical system prognostics under limited data. • Rolling bearing RUL prediction under limited data is proposed. • Time-series feature window is developed. • Multi-step ahead rolling prediction is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
ELiaukoay发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
瓶子发布了新的文献求助10
6秒前
wangrswjx完成签到,获得积分10
17秒前
18秒前
xunxun完成签到,获得积分10
22秒前
xunxun发布了新的文献求助10
24秒前
乔呀发布了新的文献求助10
27秒前
代代完成签到 ,获得积分10
27秒前
ELiaukoay完成签到 ,获得积分10
27秒前
乔呀完成签到,获得积分10
39秒前
Limerencia完成签到,获得积分10
47秒前
丽莎完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
虚拟的清炎完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Yu发布了新的文献求助10
1分钟前
yuki完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助大小可爱采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
大小可爱完成签到,获得积分10
1分钟前
大小可爱发布了新的文献求助10
2分钟前
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Tanya完成签到 ,获得积分10
2分钟前
meanie发布了新的文献求助10
2分钟前
火星上书本完成签到 ,获得积分10
2分钟前
yl完成签到 ,获得积分10
2分钟前
徐per爱豆完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764099
求助须知:如何正确求助?哪些是违规求助? 5547671
关于积分的说明 15405854
捐赠科研通 4899521
什么是DOI,文献DOI怎么找? 2635663
邀请新用户注册赠送积分活动 1583846
关于科研通互助平台的介绍 1538961