Remaining useful life prediction of rolling bearing under limited data based on adaptive time-series feature window and multi-step ahead strategy

系列(地层学) 计算机科学 窗口(计算) 特征(语言学) 时间序列 模式识别(心理学) 方位(导航) 数据挖掘 人工智能 算法 机器学习 语言学 生物 操作系统 哲学 古生物学
作者
Weili Kong,Hai Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:129: 109630-109630 被引量:19
标识
DOI:10.1016/j.asoc.2022.109630
摘要

Predicting the remaining useful life (RUL) of rolling bearings can effectively prevent the breakdown of rotating machinery systems and catastrophic accidents. Most existing RUL prediction methods require massive run-to-failure datasets for modeling. However, it is difficult to obtain these rolling bearing datasets, and for newly or recently deployed rolling bearings, the degradation data are limited with no failure data. Meanwhile, the distribution difference of degradation data of bearings under different working conditions is great, and it is a challenge to employ existing methods to predict RUL. According to the investigation, the health indicators of rolling bearings related to RUL increase exponentially with time. Motivated by this, a novel rolling bearing RUL prediction approach under limited data is proposed in this study. First, a first prediction time (FPT) identification method is developed to obtain the appropriate FPT. Then, the degradation factor is derived mathematically and used to adaptively compress the time-series feature window to better capture the degradation trends of rolling bearings. Subsequently, a stacked bidirectional long short-term memory network (SBiLSTM) is designed to predict and smoothen sequential data. Combined with the degradation factor and SBiLSTM, a multi-step ahead rolling prediction method is presented to predict RUL. Finally, several experiments are conducted on rolling bearings, and the mean absolute percentage error of the proposed method for three representative rolling bearings are 6.77%, 18.92%, and 8.95%, which are superior to other methods. Accordingly, this study contributes to revealing future degradation trends of rolling bearings mathematically, and providing a new idea for implementing other mechanical system prognostics under limited data. • Rolling bearing RUL prediction under limited data is proposed. • Time-series feature window is developed. • Multi-step ahead rolling prediction is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助难过的谷芹采纳,获得30
1秒前
Akim应助tf采纳,获得10
1秒前
Maestro_S应助茜茜采纳,获得50
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助30
4秒前
4秒前
bkagyin应助甜甜的又柔采纳,获得10
6秒前
6秒前
既白完成签到 ,获得积分10
7秒前
大气雅容发布了新的文献求助20
7秒前
7秒前
12345678发布了新的文献求助10
7秒前
香蕉觅云应助辛勤迎海采纳,获得10
7秒前
MchemG应助谨慎的寒松采纳,获得10
8秒前
somnus发布了新的文献求助10
8秒前
9秒前
臭妹妹发布了新的文献求助10
9秒前
迷路的醉波完成签到,获得积分20
10秒前
香蕉觅云应助仁爱行云采纳,获得10
10秒前
我是老大应助Lignin采纳,获得10
11秒前
打打应助热心海云采纳,获得10
11秒前
11秒前
12秒前
12秒前
我是老大应助激动的一手采纳,获得10
13秒前
13秒前
14秒前
14秒前
15秒前
16秒前
Criminology34应助高数数采纳,获得10
16秒前
mingtian发布了新的文献求助10
16秒前
aassdj完成签到,获得积分10
16秒前
17秒前
MchemG应助谨慎的寒松采纳,获得10
17秒前
负责纲发布了新的文献求助10
19秒前
19秒前
青耕完成签到,获得积分10
20秒前
Lsl完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640