Remaining useful life prediction of rolling bearing under limited data based on adaptive time-series feature window and multi-step ahead strategy

系列(地层学) 计算机科学 窗口(计算) 特征(语言学) 时间序列 模式识别(心理学) 方位(导航) 数据挖掘 人工智能 算法 机器学习 语言学 生物 操作系统 哲学 古生物学
作者
Weili Kong,Hai Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:129: 109630-109630 被引量:19
标识
DOI:10.1016/j.asoc.2022.109630
摘要

Predicting the remaining useful life (RUL) of rolling bearings can effectively prevent the breakdown of rotating machinery systems and catastrophic accidents. Most existing RUL prediction methods require massive run-to-failure datasets for modeling. However, it is difficult to obtain these rolling bearing datasets, and for newly or recently deployed rolling bearings, the degradation data are limited with no failure data. Meanwhile, the distribution difference of degradation data of bearings under different working conditions is great, and it is a challenge to employ existing methods to predict RUL. According to the investigation, the health indicators of rolling bearings related to RUL increase exponentially with time. Motivated by this, a novel rolling bearing RUL prediction approach under limited data is proposed in this study. First, a first prediction time (FPT) identification method is developed to obtain the appropriate FPT. Then, the degradation factor is derived mathematically and used to adaptively compress the time-series feature window to better capture the degradation trends of rolling bearings. Subsequently, a stacked bidirectional long short-term memory network (SBiLSTM) is designed to predict and smoothen sequential data. Combined with the degradation factor and SBiLSTM, a multi-step ahead rolling prediction method is presented to predict RUL. Finally, several experiments are conducted on rolling bearings, and the mean absolute percentage error of the proposed method for three representative rolling bearings are 6.77%, 18.92%, and 8.95%, which are superior to other methods. Accordingly, this study contributes to revealing future degradation trends of rolling bearings mathematically, and providing a new idea for implementing other mechanical system prognostics under limited data. • Rolling bearing RUL prediction under limited data is proposed. • Time-series feature window is developed. • Multi-step ahead rolling prediction is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xingyun发布了新的文献求助10
刚刚
ww完成签到,获得积分20
刚刚
刚刚
1秒前
鳗鱼雪莲完成签到,获得积分10
2秒前
思源应助现实的行云采纳,获得10
3秒前
3秒前
左彦完成签到,获得积分10
3秒前
雾霭迷茫发布了新的文献求助10
4秒前
4秒前
5秒前
Qq完成签到,获得积分10
5秒前
浪子剑客给你一刀完成签到,获得积分20
7秒前
饺子发布了新的文献求助10
7秒前
温柔大猩猩完成签到,获得积分10
8秒前
8秒前
谢尔顿发布了新的文献求助30
10秒前
Leo完成签到,获得积分20
10秒前
马路发布了新的文献求助10
13秒前
风汐5423发布了新的文献求助10
13秒前
13秒前
ssq发布了新的文献求助10
14秒前
linmu完成签到 ,获得积分10
16秒前
小二郎应助男研选手采纳,获得10
16秒前
17秒前
灵巧的翠风完成签到 ,获得积分10
18秒前
开心笑白完成签到,获得积分10
18秒前
lunar发布了新的文献求助10
20秒前
饺子完成签到,获得积分10
20秒前
Luu完成签到,获得积分20
21秒前
popo6150完成签到 ,获得积分10
23秒前
Hello应助马路采纳,获得10
23秒前
义气严青完成签到,获得积分10
25秒前
shadow完成签到,获得积分10
25秒前
ssq完成签到,获得积分10
25秒前
无辜平蓝发布了新的文献求助20
27秒前
积极的德地完成签到,获得积分10
28秒前
dms完成签到,获得积分10
28秒前
南国梦完成签到,获得积分10
29秒前
科目三应助王耶耶采纳,获得10
30秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165286
求助须知:如何正确求助?哪些是违规求助? 2816322
关于积分的说明 7912245
捐赠科研通 2475959
什么是DOI,文献DOI怎么找? 1318465
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388