亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remaining useful life prediction of rolling bearing under limited data based on adaptive time-series feature window and multi-step ahead strategy

系列(地层学) 计算机科学 窗口(计算) 特征(语言学) 时间序列 模式识别(心理学) 方位(导航) 数据挖掘 人工智能 算法 机器学习 古生物学 语言学 哲学 生物 操作系统
作者
Weili Kong,Hai Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:129: 109630-109630 被引量:19
标识
DOI:10.1016/j.asoc.2022.109630
摘要

Predicting the remaining useful life (RUL) of rolling bearings can effectively prevent the breakdown of rotating machinery systems and catastrophic accidents. Most existing RUL prediction methods require massive run-to-failure datasets for modeling. However, it is difficult to obtain these rolling bearing datasets, and for newly or recently deployed rolling bearings, the degradation data are limited with no failure data. Meanwhile, the distribution difference of degradation data of bearings under different working conditions is great, and it is a challenge to employ existing methods to predict RUL. According to the investigation, the health indicators of rolling bearings related to RUL increase exponentially with time. Motivated by this, a novel rolling bearing RUL prediction approach under limited data is proposed in this study. First, a first prediction time (FPT) identification method is developed to obtain the appropriate FPT. Then, the degradation factor is derived mathematically and used to adaptively compress the time-series feature window to better capture the degradation trends of rolling bearings. Subsequently, a stacked bidirectional long short-term memory network (SBiLSTM) is designed to predict and smoothen sequential data. Combined with the degradation factor and SBiLSTM, a multi-step ahead rolling prediction method is presented to predict RUL. Finally, several experiments are conducted on rolling bearings, and the mean absolute percentage error of the proposed method for three representative rolling bearings are 6.77%, 18.92%, and 8.95%, which are superior to other methods. Accordingly, this study contributes to revealing future degradation trends of rolling bearings mathematically, and providing a new idea for implementing other mechanical system prognostics under limited data. • Rolling bearing RUL prediction under limited data is proposed. • Time-series feature window is developed. • Multi-step ahead rolling prediction is presented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuxiaohui完成签到,获得积分10
1秒前
7秒前
7秒前
11秒前
于涵艺发布了新的文献求助10
11秒前
梅倪完成签到,获得积分10
12秒前
春和完成签到 ,获得积分10
18秒前
万能图书馆应助于涵艺采纳,获得10
20秒前
乐乐应助土书采纳,获得10
23秒前
沙茶酱菜卷完成签到 ,获得积分10
28秒前
Owen应助科研通管家采纳,获得10
32秒前
32秒前
BowieHuang应助科研通管家采纳,获得10
33秒前
无极微光应助科研通管家采纳,获得20
33秒前
33秒前
量子星尘发布了新的文献求助10
38秒前
番茄酱完成签到 ,获得积分10
39秒前
39秒前
Paris发布了新的文献求助10
40秒前
罗伊黄发布了新的文献求助10
42秒前
nnn7完成签到,获得积分10
43秒前
45秒前
桃花源的瓶起子完成签到 ,获得积分10
51秒前
53秒前
HTniconico完成签到 ,获得积分10
55秒前
壮观匪发布了新的文献求助10
59秒前
1分钟前
江夏清完成签到,获得积分10
1分钟前
1分钟前
An发布了新的文献求助10
1分钟前
心语完成签到 ,获得积分10
1分钟前
有魅力的半仙完成签到,获得积分20
1分钟前
mm完成签到 ,获得积分10
1分钟前
1分钟前
有魅力的半仙关注了科研通微信公众号
1分钟前
1分钟前
Rose发布了新的文献求助10
1分钟前
土书发布了新的文献求助10
1分钟前
LL完成签到,获得积分10
1分钟前
传奇3应助踏实的惜萍采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582179
捐赠科研通 4562367
什么是DOI,文献DOI怎么找? 2500155
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450795