Remaining useful life prediction of rolling bearing under limited data based on adaptive time-series feature window and multi-step ahead strategy

系列(地层学) 计算机科学 窗口(计算) 特征(语言学) 时间序列 模式识别(心理学) 方位(导航) 数据挖掘 人工智能 算法 机器学习 古生物学 语言学 哲学 生物 操作系统
作者
Weili Kong,Hai Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:129: 109630-109630 被引量:19
标识
DOI:10.1016/j.asoc.2022.109630
摘要

Predicting the remaining useful life (RUL) of rolling bearings can effectively prevent the breakdown of rotating machinery systems and catastrophic accidents. Most existing RUL prediction methods require massive run-to-failure datasets for modeling. However, it is difficult to obtain these rolling bearing datasets, and for newly or recently deployed rolling bearings, the degradation data are limited with no failure data. Meanwhile, the distribution difference of degradation data of bearings under different working conditions is great, and it is a challenge to employ existing methods to predict RUL. According to the investigation, the health indicators of rolling bearings related to RUL increase exponentially with time. Motivated by this, a novel rolling bearing RUL prediction approach under limited data is proposed in this study. First, a first prediction time (FPT) identification method is developed to obtain the appropriate FPT. Then, the degradation factor is derived mathematically and used to adaptively compress the time-series feature window to better capture the degradation trends of rolling bearings. Subsequently, a stacked bidirectional long short-term memory network (SBiLSTM) is designed to predict and smoothen sequential data. Combined with the degradation factor and SBiLSTM, a multi-step ahead rolling prediction method is presented to predict RUL. Finally, several experiments are conducted on rolling bearings, and the mean absolute percentage error of the proposed method for three representative rolling bearings are 6.77%, 18.92%, and 8.95%, which are superior to other methods. Accordingly, this study contributes to revealing future degradation trends of rolling bearings mathematically, and providing a new idea for implementing other mechanical system prognostics under limited data. • Rolling bearing RUL prediction under limited data is proposed. • Time-series feature window is developed. • Multi-step ahead rolling prediction is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheryy完成签到,获得积分10
1秒前
2秒前
鸣笛应助我要向阳而生采纳,获得20
4秒前
Tfgghh完成签到,获得积分10
6秒前
卷毛完成签到 ,获得积分10
6秒前
刻苦的班发布了新的文献求助10
8秒前
13秒前
Jasper应助是江江哥啊采纳,获得10
14秒前
yan琰完成签到,获得积分10
15秒前
16秒前
奶茶麻辣烫完成签到,获得积分10
17秒前
Jasper应助77采纳,获得10
18秒前
余姓懒发布了新的文献求助10
19秒前
aq22完成签到 ,获得积分10
19秒前
繁荣的康乃馨应助牙牙采纳,获得10
20秒前
21秒前
学术小子完成签到 ,获得积分10
22秒前
科研通AI5应助满意的世界采纳,获得10
22秒前
范白白发布了新的文献求助10
23秒前
陈红安发布了新的文献求助30
27秒前
Akim应助gnil采纳,获得10
30秒前
科目三应助mixiaojunhhh采纳,获得10
31秒前
zhangyu应助酷炫元风采纳,获得10
33秒前
安徒发布了新的文献求助10
34秒前
35秒前
高高完成签到 ,获得积分10
40秒前
41秒前
甘博发布了新的文献求助10
41秒前
42秒前
Orange应助Cellchang采纳,获得10
42秒前
孙燕应助陈红安采纳,获得30
43秒前
刻苦的班完成签到,获得积分10
44秒前
44秒前
EASA完成签到,获得积分10
47秒前
JamesPei应助Woaimama724采纳,获得10
47秒前
47秒前
gnil发布了新的文献求助10
47秒前
欢呼伟祺完成签到,获得积分10
49秒前
50秒前
Sun发布了新的文献求助10
51秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644