生物相容性
异种移植
聚乙二醇
PEG比率
移植
化学
小岛
涂层
生物医学工程
胰岛素
生物化学
医学
外科
内科学
有机化学
财务
经济
作者
Heon Seok Park,Ji Won Kim,Seung‐Hwan Lee,Hae Kyung Yang,Dong‐Sik Ham,Cheng Sun,Tae Ho Hong,Gilson Khang,Chung‐Gyu Park,Kun Ho Yoon
摘要
Islet microencapsulation is an attractive strategy for the minimization or avoidance of life-long immunosuppression after transplantation. However, the clinical implementation of this technique is currently limited by incomplete biocompatibility. Thus, the aim of the present study was to demonstrate the improved biocompatibility of rapamycin-containing polyethylene glycol (Rapa-PEG)-coating on alginate microcapsules containing xenogeneic islets. The Rapa-PEG-coating on the alginate layer was observed using scanning electron microscopy (SEM) and the molecular cut-off weight of the microcapsules was approximately 70 kDa. The viabilities of the alginate-encapsulated and Rapa-PEG-coated alginate-encapsulated islets were lower than the viability of the naked islets just after encapsulation, but these the differences diminished over time in culture dishes. Rapa-PEG-coating on the alginate capsules effectively decreased the proliferation of macrophage cells compared to the non-coating and alginate coating of xenogeneic pancreas tissues. Glucose-stimulated insulin secretion did not significantly differ among the groups prior to transplantation. The random blood glucose levels of diabetic mice significantly improved following the transplantation of alginate-encapsulated and Rapa-PEG-coated alginate-encapsulated islets, but there were no significant differences between these two groups. However, there was a significant decrease in the number of microcapsules with fibrotic cell infiltration in the Rapa-PEG-coated alginate microcapsule group compared to the alginate microcapsule group. In conclusion, Rapa-PEG-coating might be an effective technique with which to improve the biocompatibility of microcapsules containing xenogeneic islets. Copyright © 2015 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI