超图
复杂网络
机制(生物学)
过程(计算)
计算机科学
无标度网络
进化动力学
优先依附
学位分布
不断发展的网络
泊松分布
分布(数学)
理论计算机科学
比例(比率)
统计物理学
数学
离散数学
人口
物理
数学分析
统计
人口学
量子力学
社会学
万维网
操作系统
作者
Zhiping Wang,Haofei Yin,Xin Jiang
标识
DOI:10.1016/j.physa.2019.122545
摘要
An evolutionary hypernetwork model is proposed to describe the non-uniform evolution of social networks, in which nodes represent individuals while hyperedges represent relationships among individuals. The number of nodes in a hyperedge is a random integer. And the evolving process includes the addition of new nodes, linking of old nodes, and rewiring of links. By using Poisson process theory and the continuous method, we proved that the stationary average hyperdegree distribution follows the shifted power law (SPL). The theoretical analysis agree with the numerical simulations. Our model is universal, the fitness model in complex networks and scale-free model in hypernetworks can all be regarded as degradation cases of the model.
科研通智能强力驱动
Strongly Powered by AbleSci AI