The visual quality of streets: A human-centred continuous measurement based on machine learning algorithms and street view images

质量(理念) 人工智能 计算机科学 机器学习 感知 人工神经网络 钥匙(锁) 行人 工程类 运输工程 哲学 认识论 计算机安全 神经科学 生物
作者
Ye Yu,Wei Zeng,Qiaomu Shen,Xiaohu Zhang,Yi Lü
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE]
卷期号:46 (8): 1439-1457 被引量:143
标识
DOI:10.1177/2399808319828734
摘要

This study proposes a workable approach for quantitatively measuring the perceptual-based visual quality of streets, which has often relied on subjective impressions or feelings. With the help of recently emerged street view images and machine learning algorithms, an evaluation model has been trained to assess the perceived visual quality with accuracy similar to that of experienced urban designers, to provide full coverage and detailed results for a citywide area. The town centre of Shanghai was selected for the site. Around 140,000 screenshots from Baidu Street View were processed and a machine learning algorithm, SegNet, was applied to intelligently extract the pixels representing key elements affecting the visual quality of streets, including the building frontage, greenery, sky view, pedestrian space, motorisation, and diversity. A Java-based program was then produced to automatically collect the preferences of experienced urban designers on representative sample images. Another machine learning algorithm, i.e. an artificial neural network, was used to train an evaluation model to achieve a citywide, high-resolution evaluation of the visual quality of the streets. Further validation through different approaches shows this evaluation model obtains a satisfactory accuracy. The results from the artificial neural network also help to explore the high or low effects of various key elements on visual quality. In short, this study contributes to the development of human-centred planning and design by providing continuous measurements of an ‘unmeasurable’ quality across large-scale areas. Meanwhile, insights on the perceptual-based visual quality and detailed mapping of various key elements in streets can assist in more efficient street renewal by providing accurate design guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助刘星星采纳,获得10
刚刚
完美世界应助jekyll采纳,获得10
1秒前
自然怀梦完成签到,获得积分10
1秒前
1秒前
neo完成签到,获得积分10
2秒前
完美世界应助lyn采纳,获得30
2秒前
情怀应助Jackcaosky采纳,获得200
2秒前
123发布了新的文献求助10
2秒前
buno应助hhh采纳,获得10
3秒前
SYLH应助wltwb采纳,获得10
3秒前
Rui发布了新的文献求助10
3秒前
斯文败类应助快乐小文采纳,获得30
3秒前
5秒前
尹天扬完成签到,获得积分10
6秒前
6秒前
大方大船完成签到,获得积分10
7秒前
Sigyn完成签到,获得积分10
7秒前
顺利琦发布了新的文献求助10
7秒前
7秒前
自由完成签到,获得积分20
8秒前
Volta_zz完成签到,获得积分10
8秒前
8秒前
欣欣子完成签到,获得积分10
9秒前
10秒前
111完成签到 ,获得积分10
10秒前
10秒前
柔弱煎饼发布了新的文献求助30
11秒前
11秒前
曹梦梦完成签到,获得积分10
11秒前
11秒前
风趣霆完成签到,获得积分10
12秒前
12秒前
12秒前
小二郎应助Sigyn采纳,获得10
12秒前
科研通AI5应助不对也没错采纳,获得10
12秒前
lyn完成签到,获得积分20
12秒前
13秒前
隐形觅翠完成签到,获得积分10
13秒前
刘鹏宇发布了新的文献求助10
13秒前
lizh187完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678