The visual quality of streets: A human-centred continuous measurement based on machine learning algorithms and street view images

质量(理念) 人工智能 计算机科学 机器学习 感知 人工神经网络 钥匙(锁) 行人 工程类 运输工程 计算机安全 生物 认识论 哲学 神经科学
作者
Ye Yu,Wei Zeng,Qiaomu Shen,Xiaohu Zhang,Yi Lü
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE]
卷期号:46 (8): 1439-1457 被引量:143
标识
DOI:10.1177/2399808319828734
摘要

This study proposes a workable approach for quantitatively measuring the perceptual-based visual quality of streets, which has often relied on subjective impressions or feelings. With the help of recently emerged street view images and machine learning algorithms, an evaluation model has been trained to assess the perceived visual quality with accuracy similar to that of experienced urban designers, to provide full coverage and detailed results for a citywide area. The town centre of Shanghai was selected for the site. Around 140,000 screenshots from Baidu Street View were processed and a machine learning algorithm, SegNet, was applied to intelligently extract the pixels representing key elements affecting the visual quality of streets, including the building frontage, greenery, sky view, pedestrian space, motorisation, and diversity. A Java-based program was then produced to automatically collect the preferences of experienced urban designers on representative sample images. Another machine learning algorithm, i.e. an artificial neural network, was used to train an evaluation model to achieve a citywide, high-resolution evaluation of the visual quality of the streets. Further validation through different approaches shows this evaluation model obtains a satisfactory accuracy. The results from the artificial neural network also help to explore the high or low effects of various key elements on visual quality. In short, this study contributes to the development of human-centred planning and design by providing continuous measurements of an ‘unmeasurable’ quality across large-scale areas. Meanwhile, insights on the perceptual-based visual quality and detailed mapping of various key elements in streets can assist in more efficient street renewal by providing accurate design guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhw关闭了zhw文献求助
刚刚
东西南北完成签到,获得积分10
1秒前
锐哥发布了新的文献求助10
2秒前
顺心冬易发布了新的文献求助10
4秒前
虾米吃螃蟹完成签到,获得积分20
4秒前
Orange应助杰瑞采纳,获得10
5秒前
深情安青应助阮楷瑞采纳,获得10
6秒前
干净的人达完成签到 ,获得积分10
7秒前
8秒前
11秒前
11秒前
luffy189完成签到 ,获得积分10
14秒前
传奇3应助Sencetich采纳,获得10
16秒前
16秒前
zhencheng发布了新的文献求助10
17秒前
旺仔完成签到,获得积分10
18秒前
Ma发布了新的文献求助10
18秒前
Ava应助cc采纳,获得10
20秒前
22秒前
阮楷瑞发布了新的文献求助10
22秒前
混子小白完成签到,获得积分20
24秒前
子车茗应助fyyuanye采纳,获得20
24秒前
锐哥发布了新的文献求助10
24秒前
旺仔发布了新的文献求助10
26秒前
混子小白发布了新的文献求助10
27秒前
安稳毕业实验完成签到 ,获得积分10
29秒前
风味烤羊腿完成签到,获得积分0
32秒前
李爱国应助Ma采纳,获得30
33秒前
34秒前
张琼敏发布了新的文献求助150
35秒前
ding应助锐哥采纳,获得10
35秒前
小二郎应助景然采纳,获得10
35秒前
38秒前
page关注了科研通微信公众号
38秒前
可爱的函函应助张张张采纳,获得30
39秒前
JoeJ应助科研通管家采纳,获得10
40秒前
yujinhua应助科研通管家采纳,获得10
40秒前
酷波er应助科研通管家采纳,获得10
40秒前
cocolu应助科研通管家采纳,获得30
40秒前
Leif应助科研通管家采纳,获得10
40秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3325350
求助须知:如何正确求助?哪些是违规求助? 2956011
关于积分的说明 8578775
捐赠科研通 2633929
什么是DOI,文献DOI怎么找? 1441572
科研通“疑难数据库(出版商)”最低求助积分说明 667885
邀请新用户注册赠送积分活动 654623