Evidence of flat bands and correlated states in buckled graphene superlattices

凝聚态物理 双层石墨烯 石墨烯 超晶格 材料科学 扫描隧道显微镜 单层 费米能量 费米能级 魔法角 假间隙 超导电性 电子 纳米技术 谱线 物理 量子力学 铜酸盐
作者
Jinhai Mao,S. P. Milovanović,Miša Anđelković,Xinyuan Lai,Yang Cao,Kenji Watanabe,Takashi Taniguchi,Lucian Covaci,F. M. Peeters,A. K. Geǐm,Yuhang Jiang,Eva Y. Andrei
出处
期刊:Nature [Springer Nature]
卷期号:584 (7820): 215-220 被引量:178
标识
DOI:10.1038/s41586-020-2567-3
摘要

Two-dimensional atomic crystals can radically change their properties in response to external influences such as substrate orientation or strain, resulting in essentially new materials in terms of the electronic structure. A striking example is the creation of flat-bands in bilayer-graphene for certain 'magic' twist-angles between the orientations of the two layers. The quenched kinetic-energy in these flat-bands promotes electron-electron interactions and facilitates the emergence of strongly-correlated phases such as superconductivity and correlated-insulators. However, the exquisite fine-tuning required for finding the magic-angle where flat-bands appear in twisted-bilayer graphene, poses challenges to fabrication and scalability. Here we present an alternative route to creating flat-bands that does not involve fine tuning. Using scanning tunneling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically-flat substrate can be forced to undergo a buckling-transition, resulting in a periodically modulated pseudo-magnetic field, which in turn creates a post-graphene material with flat electronic bands. Bringing the Fermi-level into these flat-bands by electrostatic doping, we observe a pseudogap-like depletion in the density-of-states, which signals the emergence of a correlated-state. The described approach of 2D crystal buckling offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat-bands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blUe完成签到,获得积分10
刚刚
领导范儿应助程青青采纳,获得10
刚刚
云飞扬完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
生生不息完成签到,获得积分10
1秒前
乐观渊思完成签到,获得积分10
2秒前
桃子完成签到,获得积分10
2秒前
2秒前
共享精神应助苏休夫采纳,获得10
2秒前
hrbykdxly完成签到,获得积分10
2秒前
mst完成签到,获得积分10
2秒前
张伟发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
4秒前
美好的身影完成签到,获得积分10
4秒前
淡然羊应助Cindy采纳,获得10
4秒前
酷波er应助wss采纳,获得10
4秒前
搜集达人应助自觉紫安采纳,获得10
5秒前
龙舌兰完成签到,获得积分10
5秒前
科研通AI6应助乌妮卡布兹采纳,获得10
5秒前
Sxq完成签到,获得积分10
5秒前
bin完成签到,获得积分10
6秒前
6秒前
schuang完成签到,获得积分0
6秒前
深情安青应助iWanted采纳,获得10
6秒前
yfy_fairy完成签到,获得积分10
7秒前
尉迟希望发布了新的文献求助10
7秒前
子凡发布了新的文献求助10
7秒前
Winston_zhang完成签到,获得积分10
7秒前
bkagyin应助时间胶囊采纳,获得10
7秒前
8秒前
大鲁完成签到,获得积分10
8秒前
8秒前
小费完成签到 ,获得积分10
8秒前
BIRDY完成签到,获得积分10
8秒前
wei发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652096
求助须知:如何正确求助?哪些是违规求助? 4786741
关于积分的说明 15058468
捐赠科研通 4810724
什么是DOI,文献DOI怎么找? 2573366
邀请新用户注册赠送积分活动 1529262
关于科研通互助平台的介绍 1488171