数学
理想(伦理)
局部环
纯数学
商
完全交叉
交换环
戒指(化学)
交叉口(航空)
类型(生物学)
理想化
非交换环
交换性质
离散数学
组合数学
物理
法学
生态学
化学
有机化学
工程类
量子力学
政治学
生物
航空航天工程
作者
Valentina Barucci,Marco D’Anna,Francesco Strazzanti
出处
期刊:Arkiv för Matematik
[International Press of Boston, Inc.]
日期:2016-10-01
卷期号:54 (2): 321-338
被引量:13
标识
DOI:10.1007/s11512-016-0235-5
摘要
Starting with a commutative ring R and an ideal I, it is possible to define a family of rings R(I)a,b, with a,b∈R, as quotients of the Rees algebra ⊕n≥0Intn; among the rings appearing in this family we find Nagata's idealization and amalgamated duplication. Many properties of these rings depend only on R and I and not on a, b; in this paper we show that the Gorenstein and the almost Gorenstein properties are independent of a, b. More precisely, we characterize when the rings in the family are Gorenstein, complete intersection, or almost Gorenstein and we find a formula for the type.
科研通智能强力驱动
Strongly Powered by AbleSci AI