Patient‐specific PTV margins for liver stereotactic body radiation therapy determined using support vector classification with an early warning system for margin adaptation

边距(机器学习) 体素 接收机工作特性 放射治疗计划 分数(化学) 计算机科学 核医学 公制(单位) 人工智能 放射治疗 数学 模式识别(心理学) 医学 机器学习 放射科 化学 运营管理 有机化学 经济
作者
Ming Liu,Joanna Cygler,Eric Vandervoort
出处
期刊:Medical Physics [Wiley]
卷期号:47 (10): 5172-5182 被引量:6
标识
DOI:10.1002/mp.14419
摘要

Purpose An adaptive planning target volume (PTV) margin strategy incorporating a volumetric tracking error assessment after each fraction is proposed for robotic stereotactic body radiation therapy (SBRT) liver treatments. Methods and materials A supervised machine learning algorithm employing retrospective data, which emulates a dry‐run session prior to planning, is used to investigate if motion tracking errors are <2 mm, and consequently, planning target volume (PTV) margins can be reduced. A fraction of data collected during the beginning of a treatment course emulates a dry‐run session (mock) before planning. Twenty features are calculated using mock data and used for support vector classification (SVC). A treatment course is labeled as Class 1 if the maximum root‐mean‐square radial tracking error for all remaining fractions is below 2 mm, or Class 2 otherwise. We evaluate the classification using fivefold cross‐validation, leave‐one‐out cross‐validation, 500 repeated random subsampling cross‐validation, and the receiver operating characteristic (ROC) metric. The classification is independently cross‐validated on a cohort of 48 treatment plans for other anatomical sites. A per fraction assessment of volumetric tracking errors is performed for the standard 5 mm PTV margin (PTV std ) for courses predicted as Class 2; or for a margin reduced by 2 mm (PTV std‐2mm ) for those predicted as Class 1. We perturb the gross tumor volume (GTV) by the tracking errors for each x‐ray image acquisition and calculate the fractional GTV voxel occupancy probability ( P i ) inside the PTV for each treatment fraction i . For treatment courses classified as Class 1, an early warning system flags treatment courses having any P i < 0.99, and the subsequent treatments are proposed to be replanned using PTV std . Results The classification accuracies are 0.84 ± 0.06 using fivefold cross‐validation, and 0.77 when validated using an independent testing set (other anatomical sites). Eighty percent of treatment courses are correctly classified using leave‐one‐out cross‐validation. The sensitivity, precision, specificity, F1 score, and accuracy are 0.81 ± 0.09, 0.85 ± 0.08, 0.80 ± 0.11, 0.83 ± 0.06, and 0.80 ± 0.07, respectively, using 500 repeated random subsampling cross‐validation. The area under the curve for the ROC metric is 0.87 ± 0.05. The four most important features for classification are related to standard deviations of motion tracking errors, the linearity between the target location and external LED marker positions, and marker radial motion amplitudes. Eleven of 64 cases predicted to be of Class 1 have 0.96 < P i < 0.99 for each treatment fraction, and require replanning using PTV std . In comparison, the PTV std always covers the perturbed GTVs with P i > 0.99 for all patients. Conclusions Support vector classification is proposed for the classification of different motion tracking errors for patient courses based on a mock session before planning for SBRT liver treatments. It is feasible to implement patient‐specific PTV margins in the clinic, assisted with an early warning system to flag treatment courses that require replanning using larger PTV margins in an adaptive treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chinbaor完成签到,获得积分10
刚刚
刚刚
科研通AI2S应助孙雪君采纳,获得10
刚刚
1秒前
affff完成签到 ,获得积分10
1秒前
Hua发布了新的文献求助100
1秒前
2秒前
2秒前
taster驳回了凉凉应助
3秒前
听话的白易完成签到,获得积分20
3秒前
yangzhang完成签到,获得积分10
3秒前
超帅的豪英完成签到,获得积分10
4秒前
liam完成签到,获得积分10
5秒前
gaojing完成签到,获得积分10
6秒前
6秒前
研友_xnEOX8完成签到,获得积分10
6秒前
RMgX发布了新的文献求助10
7秒前
111完成签到,获得积分10
7秒前
机智雁凡完成签到,获得积分10
7秒前
花花完成签到 ,获得积分10
8秒前
红叶完成签到,获得积分10
8秒前
向蔚发布了新的文献求助10
8秒前
ldd完成签到,获得积分10
10秒前
坦率的惊蛰完成签到,获得积分10
10秒前
fei完成签到,获得积分10
10秒前
潇洒的白昼完成签到,获得积分10
11秒前
Owen应助赵寇采纳,获得10
11秒前
研友_xnEOX8发布了新的文献求助30
11秒前
12秒前
蓝豆子完成签到 ,获得积分10
12秒前
12秒前
无辜的夏兰完成签到,获得积分10
13秒前
weijian完成签到,获得积分10
13秒前
洪伟完成签到,获得积分10
15秒前
爽歪歪完成签到,获得积分10
15秒前
huco完成签到,获得积分10
16秒前
LI电池完成签到,获得积分10
16秒前
哈哈哈哈发布了新的文献求助10
16秒前
的地方法规完成签到,获得积分10
17秒前
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259