Patient‐specific PTV margins for liver stereotactic body radiation therapy determined using support vector classification with an early warning system for margin adaptation

边距(机器学习) 体素 接收机工作特性 放射治疗计划 分数(化学) 计算机科学 核医学 公制(单位) 人工智能 放射治疗 数学 模式识别(心理学) 医学 机器学习 放射科 经济 有机化学 化学 运营管理
作者
Ming Liu,Joanna Cygler,Eric Vandervoort
出处
期刊:Medical Physics [Wiley]
卷期号:47 (10): 5172-5182 被引量:6
标识
DOI:10.1002/mp.14419
摘要

Purpose An adaptive planning target volume (PTV) margin strategy incorporating a volumetric tracking error assessment after each fraction is proposed for robotic stereotactic body radiation therapy (SBRT) liver treatments. Methods and materials A supervised machine learning algorithm employing retrospective data, which emulates a dry‐run session prior to planning, is used to investigate if motion tracking errors are <2 mm, and consequently, planning target volume (PTV) margins can be reduced. A fraction of data collected during the beginning of a treatment course emulates a dry‐run session (mock) before planning. Twenty features are calculated using mock data and used for support vector classification (SVC). A treatment course is labeled as Class 1 if the maximum root‐mean‐square radial tracking error for all remaining fractions is below 2 mm, or Class 2 otherwise. We evaluate the classification using fivefold cross‐validation, leave‐one‐out cross‐validation, 500 repeated random subsampling cross‐validation, and the receiver operating characteristic (ROC) metric. The classification is independently cross‐validated on a cohort of 48 treatment plans for other anatomical sites. A per fraction assessment of volumetric tracking errors is performed for the standard 5 mm PTV margin (PTV std ) for courses predicted as Class 2; or for a margin reduced by 2 mm (PTV std‐2mm ) for those predicted as Class 1. We perturb the gross tumor volume (GTV) by the tracking errors for each x‐ray image acquisition and calculate the fractional GTV voxel occupancy probability ( P i ) inside the PTV for each treatment fraction i . For treatment courses classified as Class 1, an early warning system flags treatment courses having any P i < 0.99, and the subsequent treatments are proposed to be replanned using PTV std . Results The classification accuracies are 0.84 ± 0.06 using fivefold cross‐validation, and 0.77 when validated using an independent testing set (other anatomical sites). Eighty percent of treatment courses are correctly classified using leave‐one‐out cross‐validation. The sensitivity, precision, specificity, F1 score, and accuracy are 0.81 ± 0.09, 0.85 ± 0.08, 0.80 ± 0.11, 0.83 ± 0.06, and 0.80 ± 0.07, respectively, using 500 repeated random subsampling cross‐validation. The area under the curve for the ROC metric is 0.87 ± 0.05. The four most important features for classification are related to standard deviations of motion tracking errors, the linearity between the target location and external LED marker positions, and marker radial motion amplitudes. Eleven of 64 cases predicted to be of Class 1 have 0.96 < P i < 0.99 for each treatment fraction, and require replanning using PTV std . In comparison, the PTV std always covers the perturbed GTVs with P i > 0.99 for all patients. Conclusions Support vector classification is proposed for the classification of different motion tracking errors for patient courses based on a mock session before planning for SBRT liver treatments. It is feasible to implement patient‐specific PTV margins in the clinic, assisted with an early warning system to flag treatment courses that require replanning using larger PTV margins in an adaptive treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助张张采纳,获得10
1秒前
xcgh完成签到,获得积分10
1秒前
Ha完成签到,获得积分10
1秒前
123完成签到 ,获得积分10
1秒前
CooL完成签到 ,获得积分10
2秒前
chhzz完成签到 ,获得积分10
3秒前
金子完成签到,获得积分10
3秒前
QDDYR完成签到,获得积分10
3秒前
raibow9814完成签到,获得积分10
5秒前
言非离完成签到 ,获得积分10
6秒前
花开四海完成签到 ,获得积分10
8秒前
帅气的宽完成签到 ,获得积分10
9秒前
可靠的书本完成签到,获得积分10
9秒前
浮游应助小心翼翼采纳,获得30
10秒前
称心芷天完成签到 ,获得积分20
11秒前
复杂真完成签到,获得积分10
12秒前
不回首完成签到 ,获得积分10
12秒前
wisher完成签到 ,获得积分10
13秒前
向来缘浅关注了科研通微信公众号
13秒前
量子星尘发布了新的文献求助10
14秒前
巫马寒梅完成签到,获得积分10
16秒前
dididi完成签到 ,获得积分10
17秒前
十五完成签到,获得积分10
17秒前
黄油可颂完成签到 ,获得积分10
18秒前
爱学习的小钟完成签到 ,获得积分10
19秒前
木子完成签到,获得积分10
19秒前
swordshine完成签到,获得积分0
21秒前
qin完成签到,获得积分10
22秒前
23秒前
隔水一路秋完成签到,获得积分10
23秒前
totoro完成签到,获得积分10
24秒前
Jieh完成签到,获得积分10
24秒前
懒惰扼杀激情完成签到 ,获得积分10
25秒前
吴天春完成签到,获得积分10
25秒前
枫糖叶落完成签到,获得积分10
26秒前
Bakkkyeom完成签到,获得积分10
26秒前
可可完成签到,获得积分10
27秒前
xzy998发布了新的文献求助200
28秒前
燕子完成签到,获得积分10
28秒前
菠萝蜜完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079744
求助须知:如何正确求助?哪些是违规求助? 4297883
关于积分的说明 13389008
捐赠科研通 4121176
什么是DOI,文献DOI怎么找? 2257046
邀请新用户注册赠送积分活动 1261338
关于科研通互助平台的介绍 1195430