已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Patient‐specific PTV margins for liver stereotactic body radiation therapy determined using support vector classification with an early warning system for margin adaptation

边距(机器学习) 体素 接收机工作特性 放射治疗计划 分数(化学) 计算机科学 核医学 公制(单位) 人工智能 放射治疗 数学 模式识别(心理学) 医学 机器学习 放射科 经济 有机化学 化学 运营管理
作者
Ming Liu,Joanna Cygler,Eric Vandervoort
出处
期刊:Medical Physics [Wiley]
卷期号:47 (10): 5172-5182 被引量:6
标识
DOI:10.1002/mp.14419
摘要

Purpose An adaptive planning target volume (PTV) margin strategy incorporating a volumetric tracking error assessment after each fraction is proposed for robotic stereotactic body radiation therapy (SBRT) liver treatments. Methods and materials A supervised machine learning algorithm employing retrospective data, which emulates a dry‐run session prior to planning, is used to investigate if motion tracking errors are <2 mm, and consequently, planning target volume (PTV) margins can be reduced. A fraction of data collected during the beginning of a treatment course emulates a dry‐run session (mock) before planning. Twenty features are calculated using mock data and used for support vector classification (SVC). A treatment course is labeled as Class 1 if the maximum root‐mean‐square radial tracking error for all remaining fractions is below 2 mm, or Class 2 otherwise. We evaluate the classification using fivefold cross‐validation, leave‐one‐out cross‐validation, 500 repeated random subsampling cross‐validation, and the receiver operating characteristic (ROC) metric. The classification is independently cross‐validated on a cohort of 48 treatment plans for other anatomical sites. A per fraction assessment of volumetric tracking errors is performed for the standard 5 mm PTV margin (PTV std ) for courses predicted as Class 2; or for a margin reduced by 2 mm (PTV std‐2mm ) for those predicted as Class 1. We perturb the gross tumor volume (GTV) by the tracking errors for each x‐ray image acquisition and calculate the fractional GTV voxel occupancy probability ( P i ) inside the PTV for each treatment fraction i . For treatment courses classified as Class 1, an early warning system flags treatment courses having any P i < 0.99, and the subsequent treatments are proposed to be replanned using PTV std . Results The classification accuracies are 0.84 ± 0.06 using fivefold cross‐validation, and 0.77 when validated using an independent testing set (other anatomical sites). Eighty percent of treatment courses are correctly classified using leave‐one‐out cross‐validation. The sensitivity, precision, specificity, F1 score, and accuracy are 0.81 ± 0.09, 0.85 ± 0.08, 0.80 ± 0.11, 0.83 ± 0.06, and 0.80 ± 0.07, respectively, using 500 repeated random subsampling cross‐validation. The area under the curve for the ROC metric is 0.87 ± 0.05. The four most important features for classification are related to standard deviations of motion tracking errors, the linearity between the target location and external LED marker positions, and marker radial motion amplitudes. Eleven of 64 cases predicted to be of Class 1 have 0.96 < P i < 0.99 for each treatment fraction, and require replanning using PTV std . In comparison, the PTV std always covers the perturbed GTVs with P i > 0.99 for all patients. Conclusions Support vector classification is proposed for the classification of different motion tracking errors for patient courses based on a mock session before planning for SBRT liver treatments. It is feasible to implement patient‐specific PTV margins in the clinic, assisted with an early warning system to flag treatment courses that require replanning using larger PTV margins in an adaptive treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
苗条的傲丝完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
妖孽发布了新的文献求助10
3秒前
CooLIT发布了新的文献求助10
4秒前
4秒前
古猫宁发布了新的文献求助10
4秒前
hrs发布了新的文献求助10
4秒前
5秒前
6秒前
pipi发布了新的文献求助10
6秒前
仓鼠球完成签到,获得积分10
7秒前
kk发布了新的文献求助10
7秒前
8秒前
lcj1014发布了新的文献求助10
9秒前
XDGY完成签到,获得积分10
9秒前
烟花应助周城采纳,获得10
9秒前
9秒前
香蕉觅云应助闪闪皮卡丘采纳,获得10
9秒前
10秒前
李爱国应助xxttt采纳,获得10
11秒前
11秒前
马先森关注了科研通微信公众号
11秒前
汉堡包应助隐形的雪碧采纳,获得30
12秒前
clh123发布了新的文献求助10
14秒前
14秒前
爱读文献发布了新的文献求助10
15秒前
15秒前
舒伯特完成签到 ,获得积分10
16秒前
16秒前
16秒前
18秒前
19秒前
19秒前
阴香萍发布了新的文献求助10
19秒前
华仔应助妖孽采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322726
求助须知:如何正确求助?哪些是违规求助? 4464117
关于积分的说明 13892377
捐赠科研通 4355535
什么是DOI,文献DOI怎么找? 2392378
邀请新用户注册赠送积分活动 1386013
关于科研通互助平台的介绍 1355810