亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Patient‐specific PTV margins for liver stereotactic body radiation therapy determined using support vector classification with an early warning system for margin adaptation

边距(机器学习) 体素 接收机工作特性 放射治疗计划 分数(化学) 计算机科学 核医学 公制(单位) 人工智能 放射治疗 数学 模式识别(心理学) 医学 机器学习 放射科 经济 有机化学 化学 运营管理
作者
Ming Liu,Joanna Cygler,Eric Vandervoort
出处
期刊:Medical Physics [Wiley]
卷期号:47 (10): 5172-5182 被引量:6
标识
DOI:10.1002/mp.14419
摘要

Purpose An adaptive planning target volume (PTV) margin strategy incorporating a volumetric tracking error assessment after each fraction is proposed for robotic stereotactic body radiation therapy (SBRT) liver treatments. Methods and materials A supervised machine learning algorithm employing retrospective data, which emulates a dry‐run session prior to planning, is used to investigate if motion tracking errors are <2 mm, and consequently, planning target volume (PTV) margins can be reduced. A fraction of data collected during the beginning of a treatment course emulates a dry‐run session (mock) before planning. Twenty features are calculated using mock data and used for support vector classification (SVC). A treatment course is labeled as Class 1 if the maximum root‐mean‐square radial tracking error for all remaining fractions is below 2 mm, or Class 2 otherwise. We evaluate the classification using fivefold cross‐validation, leave‐one‐out cross‐validation, 500 repeated random subsampling cross‐validation, and the receiver operating characteristic (ROC) metric. The classification is independently cross‐validated on a cohort of 48 treatment plans for other anatomical sites. A per fraction assessment of volumetric tracking errors is performed for the standard 5 mm PTV margin (PTV std ) for courses predicted as Class 2; or for a margin reduced by 2 mm (PTV std‐2mm ) for those predicted as Class 1. We perturb the gross tumor volume (GTV) by the tracking errors for each x‐ray image acquisition and calculate the fractional GTV voxel occupancy probability ( P i ) inside the PTV for each treatment fraction i . For treatment courses classified as Class 1, an early warning system flags treatment courses having any P i < 0.99, and the subsequent treatments are proposed to be replanned using PTV std . Results The classification accuracies are 0.84 ± 0.06 using fivefold cross‐validation, and 0.77 when validated using an independent testing set (other anatomical sites). Eighty percent of treatment courses are correctly classified using leave‐one‐out cross‐validation. The sensitivity, precision, specificity, F1 score, and accuracy are 0.81 ± 0.09, 0.85 ± 0.08, 0.80 ± 0.11, 0.83 ± 0.06, and 0.80 ± 0.07, respectively, using 500 repeated random subsampling cross‐validation. The area under the curve for the ROC metric is 0.87 ± 0.05. The four most important features for classification are related to standard deviations of motion tracking errors, the linearity between the target location and external LED marker positions, and marker radial motion amplitudes. Eleven of 64 cases predicted to be of Class 1 have 0.96 < P i < 0.99 for each treatment fraction, and require replanning using PTV std . In comparison, the PTV std always covers the perturbed GTVs with P i > 0.99 for all patients. Conclusions Support vector classification is proposed for the classification of different motion tracking errors for patient courses based on a mock session before planning for SBRT liver treatments. It is feasible to implement patient‐specific PTV margins in the clinic, assisted with an early warning system to flag treatment courses that require replanning using larger PTV margins in an adaptive treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助JD采纳,获得10
2秒前
usora发布了新的文献求助10
3秒前
3秒前
852应助如意小丸子采纳,获得10
6秒前
6秒前
一粟完成签到 ,获得积分10
7秒前
9秒前
虎啸天123发布了新的文献求助10
10秒前
usora完成签到,获得积分10
10秒前
Aroma完成签到,获得积分10
13秒前
13秒前
苹果安露发布了新的文献求助10
16秒前
16秒前
17秒前
谢傲安发布了新的文献求助10
17秒前
无花果应助璐璐姐最牛逼采纳,获得10
21秒前
王一完成签到,获得积分10
23秒前
23秒前
慕青应助九尾采纳,获得10
25秒前
wang完成签到,获得积分10
25秒前
26秒前
28秒前
现代CC完成签到 ,获得积分10
29秒前
32秒前
33秒前
sissiarno应助科研通管家采纳,获得50
36秒前
852应助科研通管家采纳,获得10
36秒前
浮游应助科研通管家采纳,获得10
37秒前
打打应助科研通管家采纳,获得10
37秒前
37秒前
李健应助科研通管家采纳,获得10
37秒前
37秒前
李骞发布了新的文献求助10
37秒前
王云云完成签到 ,获得积分10
38秒前
谢傲安完成签到,获得积分20
40秒前
打打应助小王聪明蛋采纳,获得30
41秒前
姜姗完成签到,获得积分10
42秒前
火火火木完成签到 ,获得积分10
42秒前
55秒前
Murphy完成签到 ,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253441
求助须知:如何正确求助?哪些是违规求助? 4416791
关于积分的说明 13750469
捐赠科研通 4289194
什么是DOI,文献DOI怎么找? 2353310
邀请新用户注册赠送积分活动 1350007
关于科研通互助平台的介绍 1309854