A Novel Method of Heart Failure Prediction Based on DPCNN-XGBOOST Model

心力衰竭 围手术期 计算机科学 卷积神经网络 人工智能 决策树 构造(python库) 棱锥(几何) 机器学习 医学 内科学 外科 数学 几何学 程序设计语言
作者
Yu‐Wen Chen,Xiaolin Qin,Lige Zhang,Yi Bin
出处
期刊:Computers, materials & continua 卷期号:65 (1): 495-510 被引量:8
标识
DOI:10.32604/cmc.2020.011278
摘要

The occurrence of perioperative heart failure will affect the quality of medical services and threaten the safety of patients. Existing methods depend on the judgment of doctors, the results are affected by many factors such as doctors’ knowledge and experience. The accuracy is difficult to guarantee and has a serious lag. In this paper, a mixture prediction model is proposed for perioperative adverse events of heart failure, which combined with the advantages of the Deep Pyramid Convolutional Neural Networks (DPCNN) and Extreme Gradient Boosting (XGBOOST). The DPCNN was used to automatically extract features from patient’s diagnostic texts, and the text features were integrated with the preoperative examination and intraoperative monitoring values of patients, then the XGBOOST algorithm was used to construct the prediction model of heart failure. An experimental comparison was conducted on the model based on the data of patients with heart failure in southwest hospital from 2014 to 2018. The results showed that the DPCNN-XGBOOST model improved the predictive sensitivity of the model by 3% and 31% compared with the text-based DPCNN Model and the numeric-based XGBOOST Model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助BeSideWorld采纳,获得10
1秒前
AryaZzz完成签到 ,获得积分10
1秒前
1秒前
1秒前
华仔应助无语的怜梦采纳,获得10
1秒前
芳菲依旧应助苗轩采纳,获得30
1秒前
星辰大海应助小灰灰采纳,获得10
1秒前
子车茗应助Dr大壮采纳,获得30
2秒前
轻松面包完成签到,获得积分10
2秒前
bkagyin应助liujun采纳,获得10
3秒前
hao发布了新的文献求助10
3秒前
科研通AI6应助薛鲸鲸采纳,获得10
4秒前
小二郎应助麦兜采纳,获得10
4秒前
4秒前
mylian完成签到,获得积分20
5秒前
踏实的白羊完成签到,获得积分10
6秒前
轻松面包发布了新的文献求助10
6秒前
凡人修仙传完成签到,获得积分10
6秒前
Qiaoqiao发布了新的文献求助10
6秒前
silence完成签到,获得积分10
7秒前
7秒前
科目三应助优秀的宛白采纳,获得10
7秒前
orixero应助Mmmm采纳,获得10
7秒前
8秒前
9秒前
霍小美完成签到,获得积分10
9秒前
9秒前
10秒前
12秒前
浮游应助洛言lj采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
复杂函完成签到,获得积分10
12秒前
酷波er应助whf采纳,获得30
12秒前
田様应助花誓lydia采纳,获得10
12秒前
英俊的铭应助wink采纳,获得10
12秒前
NexusExplorer应助犹豫的踏歌采纳,获得10
13秒前
小圭发布了新的文献求助10
13秒前
13秒前
火星上的西牛完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812