Novel Model Predicts Diabetic Nephropathy in Type 2 Diabetes

医学 糖尿病 2型糖尿病 列线图 肾功能 内科学 糖尿病肾病 肾病 泌尿科 肾脏疾病 糖化血红素 逻辑回归 胃肠病学 1型糖尿病 内分泌学
作者
Shimin Jiang,Jinying Fang,Tianyu Yu,Lin Liu,Guming Zou,Hongmei Gao,Li Zhuo,Wenge Li
出处
期刊:American Journal of Nephrology [S. Karger AG]
卷期号:51 (2): 130-138 被引量:39
标识
DOI:10.1159/000505145
摘要

<b><i>Background:</i></b> Clinical indicators for accurately distinguishing diabetic nephropathy (DN) from non-diabetic renal disease in type 2 diabetes (T2D) are lacking. This study aimed to develop and validate a nomogram for predicting DN in T2D patients with kidney disease. <b><i>Methods:</i></b> A total of 302 consecutive patients with T2D who underwent renal biopsy at China-Japan Friendship Hospital between January 2014 and June 2019 were included in the study. The data were randomly split into a training set containing 70% of the patients (<i>n</i> = 214) and a validation set containing the remaining 30% of patients (<i>n</i> = 88). Multivariable logistic regression analyses were applied to develop a prediction nomogram incorporating the candidates selected in the least absolute shrinkage and selection operator regression model. Discrimination, calibration, and clinical usefulness of the prediction model were assessed using a concordance index (C-index), calibration plot, and decision curve analysis. Both internal and external validations were assessed. <b><i>Results:</i></b> A multivariable model that included gender, diabetes duration, diabetic retinopathy, hematuria, glycated hemoglobin A1c, anemia, blood pressure, urinary protein excretion, and estimated glomerular filtration rate was represented as the nomogram. The model demonstrated very good discrimination with a C-index of 0.934 (95% CI 0.904–0.964). The calibration plot diagram of predicted probabilities against observed DN rates indicated excellent concordance. The C-index value was 0.91 for internal validation and 0.875 for external validation. Decision curve analysis demonstrated that the novel nomogram was clinically useful. <b><i>Conclusion:</i></b> The novel model was very useful for predicting DN in patients with T2D and kidney disease, and thereby could be used by clinicians either in triage or as a replacement for biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jia完成签到,获得积分10
刚刚
欣喜乐天发布了新的文献求助10
刚刚
Kiyotaka完成签到,获得积分10
刚刚
1秒前
季夏发布了新的文献求助10
1秒前
Tingshan发布了新的文献求助20
2秒前
背后的诺言完成签到 ,获得积分20
2秒前
GHOST完成签到,获得积分20
3秒前
3秒前
勤奋的蜗牛完成签到,获得积分20
3秒前
omo发布了新的文献求助10
3秒前
Akim应助糊糊采纳,获得10
4秒前
Zn应助dsjlove采纳,获得10
4秒前
月球宇航员完成签到,获得积分10
4秒前
4秒前
英姑应助亲爱的安德烈采纳,获得10
6秒前
今后应助workwork采纳,获得10
6秒前
6秒前
落后翠柏发布了新的文献求助10
6秒前
淡然凝丹完成签到,获得积分10
6秒前
Y_Jfeng完成签到,获得积分10
7秒前
潼熙甄完成签到 ,获得积分10
8秒前
Lucas应助糖糖采纳,获得10
8秒前
wyblobin发布了新的文献求助10
8秒前
星辰大海应助叶飞荷采纳,获得10
8秒前
wanmiao12完成签到,获得积分10
9秒前
9秒前
10秒前
lmr完成签到,获得积分10
10秒前
gu完成签到 ,获得积分10
11秒前
科研小白完成签到,获得积分10
11秒前
马建国发布了新的文献求助10
11秒前
顾矜应助落后翠柏采纳,获得10
11秒前
搜集达人应助无情的白桃采纳,获得10
11秒前
顾矜应助lina采纳,获得10
11秒前
11秒前
科研通AI5应助南桥采纳,获得10
12秒前
13秒前
翟函完成签到,获得积分10
13秒前
苏照杭应助余红采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762