Porous CuO nanobelts assembly film for nonenzymatic electrochemical determination of glucose with High fabrication repeatability and sensing stability

材料科学 煅烧 电极 氧化铟锡 纳米技术 制作 电化学 纳米材料 线性范围 多孔性 电化学气体传感器 薄膜 检出限 化学工程 化学 复合材料 色谱法 替代医学 催化作用 物理化学 病理 工程类 医学 生物化学
作者
Yong-Yu Li,Ping Kang,Hong-Qi Huang,Zhonggang Liu,Gang Li,Zheng Guo,Xing‐Jiu Huang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:307: 127639-127639 被引量:41
标识
DOI:10.1016/j.snb.2019.127639
摘要

Due to high sensitivity, nonenzymatic glucose sensors based on nanomaterials have attracted great attention in various fields. However, it is still a critical issue to develop a highly sensitive, selective and stable nonenzymatic glucose sensor. In this manuscript, a Langmuir–Blodgett (L-B) assembly technique along with in situ thermal oxidation has been proposed to repeatedly construct a stable nonenzymatic electrochemical glucose sensor based on porous CuO nanobelts (CuO PNBs) film as an example. Cu2Se nanobelts are first assembled to be a uniform and dense film via the l-B technique. After transferred onto indium tin oxide (ITO) electrode and followed with in situ calcination in air, they are transformed into CuO PNBs film, which is closely anchored on the ITO electrode. Through manipulating the number of assembly layer, the thickness of CuO PNBs film can be tunable. Electrochemical results demonstrate that the sensing performance of the CuO PNBs film toward glucose is highly associated with its thickness. Under the optimal thickness of about 230 nm, it exhibits the best sensitivity with a low detection limit of 60 nM in a wide linear range from 0.1 μM to 2 mM. More importantly, the CuO PNBs assembly film displays a robust stability and anti-interference capability. Finally, the enhanced sensing mechanism and effect of the film thickness are discussed for the CuO PNBs film toward glucose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾经富完成签到,获得积分10
1秒前
酷酷海豚完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
青青完成签到 ,获得积分10
5秒前
Chan0501发布了新的文献求助10
5秒前
昭昭完成签到,获得积分10
6秒前
SCI发布了新的文献求助10
6秒前
卓然完成签到,获得积分10
6秒前
李来仪发布了新的文献求助10
7秒前
8秒前
菲菲呀完成签到,获得积分10
8秒前
Rrr发布了新的文献求助10
8秒前
10秒前
陌路完成签到,获得积分10
10秒前
善学以致用应助leon采纳,获得30
10秒前
11秒前
斯文败类应助嘻嘻采纳,获得10
11秒前
科研通AI5应助小只bb采纳,获得30
11秒前
yyyy发布了新的文献求助10
11秒前
2023AKY完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
彭于晏应助惠惠采纳,获得10
14秒前
风魂剑主完成签到,获得积分10
15秒前
yryzst9899发布了新的文献求助10
15秒前
16秒前
飘逸小笼包完成签到,获得积分10
16秒前
科研小郑完成签到,获得积分10
16秒前
CipherSage应助熊boy采纳,获得10
16秒前
XXGG完成签到 ,获得积分10
17秒前
大个应助舒心赛凤采纳,获得10
17秒前
晨曦发布了新的文献求助10
18秒前
18秒前
ff0110完成签到,获得积分10
19秒前
星辰大海应助苹果萧采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794