UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation

计算机科学 分割 人工智能 特征(语言学) 编码器 加速 模式识别(心理学) 卷积神经网络 推论 网络体系结构 计算机安全 语言学 操作系统 哲学
作者
Zongwei Zhou,Md Mahfuzur Rahman Siddiquee,Nima Tajbakhsh,Jianming Liang
出处
期刊:Cornell University - arXiv 被引量:11
标识
DOI:10.48550/arxiv.1912.05074
摘要

The state-of-the-art models for medical image segmentation are variants of U-Net and fully convolutional networks (FCN). Despite their success, these models have two limitations: (1) their optimal depth is apriori unknown, requiring extensive architecture search or inefficient ensemble of models of varying depths; and (2) their skip connections impose an unnecessarily restrictive fusion scheme, forcing aggregation only at the same-scale feature maps of the encoder and decoder sub-networks. To overcome these two limitations, we propose UNet++, a new neural architecture for semantic and instance segmentation, by (1) alleviating the unknown network depth with an efficient ensemble of U-Nets of varying depths, which partially share an encoder and co-learn simultaneously using deep supervision; (2) redesigning skip connections to aggregate features of varying semantic scales at the decoder sub-networks, leading to a highly flexible feature fusion scheme; and (3) devising a pruning scheme to accelerate the inference speed of UNet++. We have evaluated UNet++ using six different medical image segmentation datasets, covering multiple imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and electron microscopy (EM), and demonstrating that (1) UNet++ consistently outperforms the baseline models for the task of semantic segmentation across different datasets and backbone architectures; (2) UNet++ enhances segmentation quality of varying-size objects -- an improvement over the fixed-depth U-Net; (3) Mask RCNN++ (Mask R-CNN with UNet++ design) outperforms the original Mask R-CNN for the task of instance segmentation; and (4) pruned UNet++ models achieve significant speedup while showing only modest performance degradation. Our implementation and pre-trained models are available at https://github.com/MrGiovanni/UNetPlusPlus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
towerman发布了新的文献求助10
1秒前
苏卿应助快乐的亿万富翁采纳,获得10
1秒前
义气绿柳发布了新的文献求助20
1秒前
2秒前
丘比特应助冷静身影采纳,获得10
2秒前
sevenseven完成签到,获得积分10
3秒前
小王完成签到,获得积分10
3秒前
湖医小朱完成签到,获得积分10
4秒前
foxp3完成签到,获得积分10
5秒前
震动的大白菜真实的钥匙完成签到,获得积分10
5秒前
情怀应助xxxd采纳,获得10
5秒前
5秒前
5秒前
刘媛发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
科研通AI5应助Ruoru采纳,获得10
8秒前
orixero应助寒冷的咖啡采纳,获得10
9秒前
9秒前
愤怒的小吴完成签到,获得积分20
9秒前
9秒前
9秒前
戴帽子的噗噗完成签到,获得积分10
9秒前
款冬发布了新的文献求助10
10秒前
Zn举报蔡从安求助涉嫌违规
10秒前
二号发布了新的文献求助10
11秒前
11秒前
11秒前
不爱吃姜发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
义气绿柳完成签到,获得积分10
13秒前
Landau发布了新的文献求助10
14秒前
14秒前
14秒前
tjl完成签到,获得积分10
14秒前
幸福大白发布了新的文献求助10
15秒前
JamesPei应助二号采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126