Lightweight denoising filtering neural network for FBP algorithm

人工神经网络 算法 滤波器(信号处理) 计算机科学 降噪 迭代重建 公制(单位) 投影(关系代数) 人工智能 帧(网络) 重建算法 噪音(视频) 模式识别(心理学) 计算机视觉 图像(数学) 工程类 电信 运营管理
作者
Andrei Yamaev,Marina Chukalina,Dmitry Nikolaev,Alexander Sheshkus,A. I. Chulichkov
标识
DOI:10.1117/12.2587185
摘要

In that paper, we a suggest lightweight filtering neural network, which implements the filtering stage in the Filtered Back-Projection algorithm (FBP), but good reconstruction results are achieved not only in ideal data but also in noisy data, which a usual FBP algorithm cannot achieve. Thus, our neural network is not an only variation of Ramp filter, which is usually used then FBP algorithm, but also a denoising filter. The neural network architecture was inspired with the idea of the possibility of the Ramp filtering operation's approximation with sufficient accuracy. The efficiency of our network was shown on the synthetic data, which imitate tomographic projections collected with low exposition. In the generation of synthetic data, we have taken into account the quantum nature of X-ray radiation, exposition time of one frame, and non-linear detector response. The FBP reconstruction time with our neural network was 13 times faster than the time of reconstruction neural network from Learned Primal-Dual Reconstruction, and our reconstruction quality 0.906 by SSIM metric, which is enough to identify most significant objects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助宋赛创采纳,获得10
1秒前
1秒前
2秒前
GFY完成签到,获得积分10
2秒前
3秒前
4秒前
5秒前
5秒前
麦瑞发布了新的文献求助10
5秒前
gonna完成签到,获得积分10
6秒前
所所应助执着的觅露采纳,获得10
6秒前
田様应助温柔发卡采纳,获得10
6秒前
大个应助9sun采纳,获得10
7秒前
阿郑发布了新的文献求助10
7秒前
隐形曼青应助可靠豌豆采纳,获得30
7秒前
酷波er应助赵伟豪采纳,获得10
8秒前
芋圆发布了新的文献求助10
9秒前
科研通AI2S应助大人采纳,获得10
10秒前
钱罐罐发布了新的文献求助10
11秒前
13秒前
小乐儿~完成签到,获得积分10
13秒前
13秒前
wanci应助xingfangshu采纳,获得10
13秒前
香蕉觅云应助xingfangshu采纳,获得10
14秒前
687完成签到,获得积分10
17秒前
领导范儿应助Yeshenyue采纳,获得10
18秒前
wifi发布了新的文献求助10
18秒前
19秒前
19秒前
21秒前
21秒前
脑洞疼应助HH采纳,获得10
22秒前
22秒前
23秒前
23秒前
23秒前
无花果应助凸迩丝儿采纳,获得10
24秒前
善学以致用应助钱罐罐采纳,获得10
24秒前
大人发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500