材料科学
微观结构
包层(金属加工)
压痕硬度
涂层
激光器
复合材料
合金
冶金
腐蚀
光学
物理
作者
Wuyan Yuan,Ruifeng Li,Zhaohui Chen,Jiayang Gu,Yingtao Tian
标识
DOI:10.1016/j.surfcoat.2020.126582
摘要
High-speed laser cladding technology can significantly improve the efficiency of coating preparation and effectively widen the application range of laser cladding. In this study, the Ni45 powders were deposited on steel substrate by traditional low speed laser cladding and high-speed laser cladding process, respectively. The cladding efficiency, surface forming, cross-sectional microstructure, microhardness, wear and corrosion resistance properties of the traditional and high-speed laser cladded Ni45 alloy coatings were compared. It can be seen that the thickness of the high-speed laser cladding coating was much thinner than that of the traditional laser cladding coating. Compared with traditional laser cladding, high-speed laser cladding could achieve a cladding speed of 76.86 m/min and a cladding efficiency of 156.79 cm2/min. The microstructure of the two kinds of coatings shows the same growth law, but the microstructure in high-speed laser cladding was smaller and denser, and the columnar crystal interval was narrower, only about 6 μm. It is found that the cooling rate of the traditional laser cladding coating was smaller than that of the high-speed laser cladding, and as the cladding speed increased, the cooling rate became higher and higher. The cross-section microhardness of the traditional laser cladding coating was relatively uniform of 337 HV0.2, while the microhardness of high-speed laser cladding surface increased to about 543 HV0.2. In addition, the wear and corrosion resistance of high-speed laser cladded coatings were better than that of traditional laser cladded coatings. As the cladding speed increased, the wear and corrosion resistance of the cladded coatings became better.
科研通智能强力驱动
Strongly Powered by AbleSci AI