Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum

惯性测量装置 运动学 地面反作用力 步态 加速度计 压力中心(流体力学) 计算机科学 弹道 步态分析 模拟 生物力学 人工神经网络 人工智能 工程类 物理医学与康复 物理 经典力学 医学 热力学 操作系统 航空航天工程 空气动力学 天文
作者
Myunghyun Lee,Sukyung Park
出处
期刊:Sensors [MDPI AG]
卷期号:20 (21): 6277-6277 被引量:33
标识
DOI:10.3390/s20216277
摘要

Kinetics data such as ground reaction forces (GRFs) are commonly used as indicators for rehabilitation and sports performance; however, they are difficult to measure with convenient wearable devices. Therefore, researchers have attempted to estimate accurately unmeasured kinetics data with artificial neural networks (ANNs). Because the inputs to an ANN affect its performance, they must be carefully selected. The GRF and center of pressure (CoP) have a mechanical relationship with the center of mass (CoM) in the three dimensions (3D). This biomechanical characteristic can be used to establish an appropriate input and structure of an ANN. In this study, an ANN for estimating gait kinetics with a single inertial measurement unit (IMU) was designed; the kinematics of the IMU placed on the sacrum as a proxy for the CoM kinematics were applied based on the 3D spring mechanics. The walking data from 17 participants walking at various speeds were used to train and validate the ANN. The estimated 3D GRF, CoP trajectory, and joint torques of the lower limbs were reasonably accurate, with normalized root-mean-square errors (NRMSEs) of 6.7% to 15.6%, 8.2% to 20.0%, and 11.4% to 24.1%, respectively. This result implies that the biomechanical characteristics can be used to estimate the complete three-dimensional gait data with an ANN model and a single IMU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
michaelvin完成签到,获得积分10
1秒前
学术大白完成签到 ,获得积分10
4秒前
4秒前
SYT完成签到,获得积分10
5秒前
6秒前
8秒前
8秒前
8秒前
9秒前
9秒前
魏伯安发布了新的文献求助10
9秒前
9秒前
zhouleiwang完成签到,获得积分10
10秒前
李爱国应助aiming采纳,获得10
11秒前
无奈傲菡完成签到,获得积分10
12秒前
TT发布了新的文献求助10
12秒前
啦啦啦发布了新的文献求助10
13秒前
sun发布了新的文献求助10
14秒前
荣荣完成签到,获得积分10
14秒前
15秒前
小安完成签到,获得积分10
16秒前
Spencer完成签到 ,获得积分10
16秒前
PengHu完成签到,获得积分10
17秒前
17秒前
19秒前
21秒前
21秒前
21秒前
ywang发布了新的文献求助10
22秒前
失眠虔纹完成签到,获得积分10
22秒前
斯文败类应助nextconnie采纳,获得10
22秒前
药学牛马发布了新的文献求助10
26秒前
26秒前
27秒前
30秒前
张无缺完成签到,获得积分10
33秒前
35秒前
CodeCraft应助MES采纳,获得10
36秒前
笨笨乘风完成签到,获得积分10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849