Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum

惯性测量装置 运动学 地面反作用力 步态 加速度计 压力中心(流体力学) 计算机科学 弹道 步态分析 模拟 生物力学 人工神经网络 人工智能 工程类 物理医学与康复 物理 经典力学 医学 热力学 操作系统 航空航天工程 空气动力学 天文
作者
Myunghyun Lee,Sukyung Park
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:20 (21): 6277-6277 被引量:33
标识
DOI:10.3390/s20216277
摘要

Kinetics data such as ground reaction forces (GRFs) are commonly used as indicators for rehabilitation and sports performance; however, they are difficult to measure with convenient wearable devices. Therefore, researchers have attempted to estimate accurately unmeasured kinetics data with artificial neural networks (ANNs). Because the inputs to an ANN affect its performance, they must be carefully selected. The GRF and center of pressure (CoP) have a mechanical relationship with the center of mass (CoM) in the three dimensions (3D). This biomechanical characteristic can be used to establish an appropriate input and structure of an ANN. In this study, an ANN for estimating gait kinetics with a single inertial measurement unit (IMU) was designed; the kinematics of the IMU placed on the sacrum as a proxy for the CoM kinematics were applied based on the 3D spring mechanics. The walking data from 17 participants walking at various speeds were used to train and validate the ANN. The estimated 3D GRF, CoP trajectory, and joint torques of the lower limbs were reasonably accurate, with normalized root-mean-square errors (NRMSEs) of 6.7% to 15.6%, 8.2% to 20.0%, and 11.4% to 24.1%, respectively. This result implies that the biomechanical characteristics can be used to estimate the complete three-dimensional gait data with an ANN model and a single IMU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
宁羽发布了新的文献求助10
1秒前
南提发布了新的文献求助10
1秒前
打打应助泡泡糖采纳,获得10
1秒前
lhx发布了新的文献求助10
2秒前
zhxs发布了新的文献求助10
2秒前
MelinaY完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
大模型应助拼搏的香菇采纳,获得10
4秒前
ont-tnt发布了新的文献求助10
5秒前
CipherSage应助海关监管环境采纳,获得10
5秒前
6秒前
liars发布了新的文献求助10
6秒前
6秒前
一击必中发布了新的文献求助10
7秒前
斯文败类应助MelinaY采纳,获得10
7秒前
7秒前
卡卡西应助宁羽采纳,获得20
8秒前
小白完成签到,获得积分10
8秒前
明理芷云发布了新的文献求助10
8秒前
xunxunmimi发布了新的文献求助10
9秒前
略略完成签到,获得积分10
9秒前
勿明应助zdq10068采纳,获得100
10秒前
10秒前
ZhengSyHoe发布了新的文献求助10
10秒前
10秒前
科研狗发布了新的文献求助10
10秒前
11秒前
魔幻诗兰完成签到,获得积分10
11秒前
12秒前
yookia应助ont-tnt采纳,获得10
13秒前
晚心发布了新的文献求助10
13秒前
14秒前
14秒前
Q_Q发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785