已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Cloud-Edge Collaboration Framework for Cognitive Service

服务器 计算机科学 云计算 边缘计算 计算机网络 分布式计算 人工智能 操作系统
作者
Chuntao Ding,Ao Zhou,Yunxin Liu,Rong Chang,Ching‐Hsien Hsu,Shangguang Wang
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1489-1499 被引量:52
标识
DOI:10.1109/tcc.2020.2997008
摘要

Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing lightweight data pre-processing tasks on edge servers for cloud-hosted cognitive servers. These approaches have two major limitations. First, it is uneasy for the mobile applications to assure satisfactory user experience in terms of network communication delay, because the intermediary edge servers are used only to pre-process data (e.g., images and videos) and the cloud servers are used to complete the tasks. Second, these approaches assume the pre-trained deep learning models deployed on cloud servers are static, and will not attempt to automatically upgrade in a context-aware manner. In this article, we propose a cloud-edge collaboration framework that facilitates delivering cognitive services with long-lasting, fast response, and high accuracy properties. We fist deploy a shallow model (i.e., EdgeCNN) on the edge server and a deep model (i.e., CloudCNN) on the cloud server. EdgeCNN can provide durable and rapid response cognitive services, because edge servers not only provide computing resources for mobile applications, but also close to users. Then, we enable CloudCNN to assist in training EdgeCNN to improve the performance of the latter. Thus, EdgeCNN also provides high-accuracy cognitive services. Furthermore, because users may continue to upload data to edge servers in real-world scenarios, we propose to use the ongoing assistance of CloudCNN to further improve the accuracy of the shallow model. Experimental results show that EdgeCNN can reduce the average response time of cognitive services by up to 55.08 percent and improve accuracy by up to 26.70 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
容易饱发布了新的文献求助10
3秒前
传奇完成签到 ,获得积分10
3秒前
Russia完成签到 ,获得积分10
6秒前
平常的凡白完成签到 ,获得积分10
7秒前
Edward完成签到 ,获得积分10
8秒前
南波万关注了科研通微信公众号
8秒前
8秒前
在水一方应助hyx-dentist采纳,获得10
8秒前
houfei发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
丘比特应助年糕采纳,获得10
13秒前
温馨家园完成签到 ,获得积分10
14秒前
锋芒不毕露完成签到,获得积分10
14秒前
ren发布了新的文献求助30
15秒前
16秒前
小小鹅发布了新的文献求助10
17秒前
17秒前
CipherSage应助容易饱采纳,获得10
18秒前
汉堡包应助dasaber采纳,获得10
18秒前
19秒前
康康发布了新的文献求助10
21秒前
hyx-dentist发布了新的文献求助10
22秒前
钱来完成签到,获得积分10
23秒前
Chawee发布了新的文献求助10
23秒前
23秒前
kaki发布了新的文献求助10
24秒前
赎罪完成签到 ,获得积分10
25秒前
容易饱完成签到,获得积分10
26秒前
Wan发布了新的文献求助10
27秒前
serendipity完成签到 ,获得积分10
27秒前
南波万发布了新的文献求助30
30秒前
gk123kk完成签到,获得积分10
32秒前
ZHANG完成签到 ,获得积分10
32秒前
kaki完成签到,获得积分10
34秒前
34秒前
Chawee完成签到,获得积分10
35秒前
英俊的铭应助dasaber采纳,获得10
35秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793439
关于积分的说明 7806660
捐赠科研通 2449725
什么是DOI,文献DOI怎么找? 1303403
科研通“疑难数据库(出版商)”最低求助积分说明 626861
版权声明 601309