亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Cloud-Edge Collaboration Framework for Cognitive Service

服务器 计算机科学 云计算 边缘计算 计算机网络 分布式计算 人工智能 操作系统
作者
Chuntao Ding,Ao Zhou,Yunxin Liu,Rong Chang,Ching‐Hsien Hsu,Shangguang Wang
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1489-1499 被引量:52
标识
DOI:10.1109/tcc.2020.2997008
摘要

Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing lightweight data pre-processing tasks on edge servers for cloud-hosted cognitive servers. These approaches have two major limitations. First, it is uneasy for the mobile applications to assure satisfactory user experience in terms of network communication delay, because the intermediary edge servers are used only to pre-process data (e.g., images and videos) and the cloud servers are used to complete the tasks. Second, these approaches assume the pre-trained deep learning models deployed on cloud servers are static, and will not attempt to automatically upgrade in a context-aware manner. In this article, we propose a cloud-edge collaboration framework that facilitates delivering cognitive services with long-lasting, fast response, and high accuracy properties. We fist deploy a shallow model (i.e., EdgeCNN) on the edge server and a deep model (i.e., CloudCNN) on the cloud server. EdgeCNN can provide durable and rapid response cognitive services, because edge servers not only provide computing resources for mobile applications, but also close to users. Then, we enable CloudCNN to assist in training EdgeCNN to improve the performance of the latter. Thus, EdgeCNN also provides high-accuracy cognitive services. Furthermore, because users may continue to upload data to edge servers in real-world scenarios, we propose to use the ongoing assistance of CloudCNN to further improve the accuracy of the shallow model. Experimental results show that EdgeCNN can reduce the average response time of cognitive services by up to 55.08 percent and improve accuracy by up to 26.70 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊猫完成签到,获得积分10
2秒前
山野有雾都完成签到 ,获得积分20
5秒前
10秒前
Hope发布了新的文献求助10
14秒前
Hope完成签到,获得积分10
21秒前
38秒前
烟花应助DJDJDDDJ采纳,获得10
54秒前
Ldq应助科研通管家采纳,获得10
1分钟前
xie完成签到 ,获得积分10
1分钟前
cqbrain123完成签到,获得积分10
1分钟前
lvzhou完成签到,获得积分10
1分钟前
1分钟前
lvzhou发布了新的文献求助10
2分钟前
我是老大应助山楂采纳,获得10
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
2分钟前
所所应助armpit采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
hahahan完成签到 ,获得积分10
2分钟前
2分钟前
armpit发布了新的文献求助10
2分钟前
李健应助熊猫采纳,获得10
3分钟前
armpit完成签到,获得积分10
3分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
西伯利亚老母猪完成签到,获得积分10
3分钟前
ding应助幻影采纳,获得10
3分钟前
3分钟前
3分钟前
幻影发布了新的文献求助10
3分钟前
Criminology34应助熊猫采纳,获得20
4分钟前
4分钟前
宋烁完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
Ava应助yqt采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064609
求助须知:如何正确求助?哪些是违规求助? 4287554
关于积分的说明 13359137
捐赠科研通 4106129
什么是DOI,文献DOI怎么找? 2248427
邀请新用户注册赠送积分活动 1253947
关于科研通互助平台的介绍 1185322