A Cloud-Edge Collaboration Framework for Cognitive Service

服务器 计算机科学 云计算 边缘计算 计算机网络 分布式计算 人工智能 操作系统
作者
Chuntao Ding,Ao Zhou,Yunxin Liu,Rong Chang,Ching‐Hsien Hsu,Shangguang Wang
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1489-1499 被引量:52
标识
DOI:10.1109/tcc.2020.2997008
摘要

Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing lightweight data pre-processing tasks on edge servers for cloud-hosted cognitive servers. These approaches have two major limitations. First, it is uneasy for the mobile applications to assure satisfactory user experience in terms of network communication delay, because the intermediary edge servers are used only to pre-process data (e.g., images and videos) and the cloud servers are used to complete the tasks. Second, these approaches assume the pre-trained deep learning models deployed on cloud servers are static, and will not attempt to automatically upgrade in a context-aware manner. In this article, we propose a cloud-edge collaboration framework that facilitates delivering cognitive services with long-lasting, fast response, and high accuracy properties. We fist deploy a shallow model (i.e., EdgeCNN) on the edge server and a deep model (i.e., CloudCNN) on the cloud server. EdgeCNN can provide durable and rapid response cognitive services, because edge servers not only provide computing resources for mobile applications, but also close to users. Then, we enable CloudCNN to assist in training EdgeCNN to improve the performance of the latter. Thus, EdgeCNN also provides high-accuracy cognitive services. Furthermore, because users may continue to upload data to edge servers in real-world scenarios, we propose to use the ongoing assistance of CloudCNN to further improve the accuracy of the shallow model. Experimental results show that EdgeCNN can reduce the average response time of cognitive services by up to 55.08 percent and improve accuracy by up to 26.70 percent.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
October发布了新的文献求助10
2秒前
张丹兰发布了新的文献求助10
3秒前
酷波er应助娇气的火车采纳,获得10
3秒前
安平完成签到,获得积分10
4秒前
5秒前
Wang完成签到 ,获得积分10
6秒前
每天都要开心完成签到 ,获得积分10
7秒前
Verity应助涂丁元采纳,获得10
7秒前
7秒前
圣母院的赵大夫关注了科研通微信公众号
8秒前
娜行发布了新的文献求助10
8秒前
小白完成签到 ,获得积分10
9秒前
lili完成签到 ,获得积分10
11秒前
October完成签到,获得积分10
11秒前
12秒前
科研通AI6应助豆豆突采纳,获得10
13秒前
嘿嘿发布了新的文献求助10
16秒前
张丹兰完成签到,获得积分10
16秒前
微笑的丑发布了新的文献求助10
17秒前
18秒前
19秒前
繁荣的夏岚完成签到 ,获得积分10
21秒前
21秒前
ZeKaWa应助keyan123采纳,获得10
23秒前
Jeff发布了新的文献求助10
23秒前
Wang发布了新的文献求助30
24秒前
25秒前
26秒前
一点通完成签到,获得积分10
28秒前
华仔应助mnm采纳,获得10
30秒前
Akim应助Jeff采纳,获得10
30秒前
威武紫青发布了新的文献求助10
31秒前
嘿嘿发布了新的文献求助10
31秒前
32秒前
深情安青应助微笑的丑采纳,获得10
32秒前
DengJJJ完成签到,获得积分10
33秒前
33秒前
35秒前
有且仅有发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915