亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Cloud-Edge Collaboration Framework for Cognitive Service

服务器 计算机科学 云计算 边缘计算 计算机网络 分布式计算 人工智能 操作系统
作者
Chuntao Ding,Ao Zhou,Yunxin Liu,Rong Chang,Ching‐Hsien Hsu,Shangguang Wang
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1489-1499 被引量:52
标识
DOI:10.1109/tcc.2020.2997008
摘要

Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing lightweight data pre-processing tasks on edge servers for cloud-hosted cognitive servers. These approaches have two major limitations. First, it is uneasy for the mobile applications to assure satisfactory user experience in terms of network communication delay, because the intermediary edge servers are used only to pre-process data (e.g., images and videos) and the cloud servers are used to complete the tasks. Second, these approaches assume the pre-trained deep learning models deployed on cloud servers are static, and will not attempt to automatically upgrade in a context-aware manner. In this article, we propose a cloud-edge collaboration framework that facilitates delivering cognitive services with long-lasting, fast response, and high accuracy properties. We fist deploy a shallow model (i.e., EdgeCNN) on the edge server and a deep model (i.e., CloudCNN) on the cloud server. EdgeCNN can provide durable and rapid response cognitive services, because edge servers not only provide computing resources for mobile applications, but also close to users. Then, we enable CloudCNN to assist in training EdgeCNN to improve the performance of the latter. Thus, EdgeCNN also provides high-accuracy cognitive services. Furthermore, because users may continue to upload data to edge servers in real-world scenarios, we propose to use the ongoing assistance of CloudCNN to further improve the accuracy of the shallow model. Experimental results show that EdgeCNN can reduce the average response time of cognitive services by up to 55.08 percent and improve accuracy by up to 26.70 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
12秒前
15秒前
研友_R2D2发布了新的文献求助10
16秒前
生姜批发刘哥完成签到 ,获得积分0
18秒前
朴实剑通完成签到 ,获得积分10
21秒前
梓歆发布了新的文献求助30
22秒前
九司应助研友_R2D2采纳,获得10
31秒前
发发完成签到 ,获得积分10
37秒前
46秒前
浮游应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
1分钟前
Alisha完成签到,获得积分10
1分钟前
1分钟前
梓歆发布了新的文献求助10
1分钟前
Darcy完成签到,获得积分10
1分钟前
所所应助Darcy采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
Fairy完成签到,获得积分10
2分钟前
2分钟前
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Darcy发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
大个应助九司采纳,获得10
3分钟前
研友_R2D2发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
九司发布了新的文献求助10
3分钟前
4分钟前
研友_R2D2发布了新的文献求助30
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583243
关于积分的说明 14389081
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472860
邀请新用户注册赠送积分活动 1459082
关于科研通互助平台的介绍 1432553