A Cloud-Edge Collaboration Framework for Cognitive Service

服务器 计算机科学 云计算 边缘计算 计算机网络 分布式计算 人工智能 操作系统
作者
Chuntao Ding,Ao Zhou,Yunxin Liu,Rong Chang,Ching‐Hsien Hsu,Shangguang Wang
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1489-1499 被引量:52
标识
DOI:10.1109/tcc.2020.2997008
摘要

Mobile applications can leverage high-quality deep learning models such as convolutional neural networks and deep neural networks to provide high-performance cognitive services. Prior work on deep learning models-based mobile applications in a cloud-edge computing environment focuses on performing lightweight data pre-processing tasks on edge servers for cloud-hosted cognitive servers. These approaches have two major limitations. First, it is uneasy for the mobile applications to assure satisfactory user experience in terms of network communication delay, because the intermediary edge servers are used only to pre-process data (e.g., images and videos) and the cloud servers are used to complete the tasks. Second, these approaches assume the pre-trained deep learning models deployed on cloud servers are static, and will not attempt to automatically upgrade in a context-aware manner. In this article, we propose a cloud-edge collaboration framework that facilitates delivering cognitive services with long-lasting, fast response, and high accuracy properties. We fist deploy a shallow model (i.e., EdgeCNN) on the edge server and a deep model (i.e., CloudCNN) on the cloud server. EdgeCNN can provide durable and rapid response cognitive services, because edge servers not only provide computing resources for mobile applications, but also close to users. Then, we enable CloudCNN to assist in training EdgeCNN to improve the performance of the latter. Thus, EdgeCNN also provides high-accuracy cognitive services. Furthermore, because users may continue to upload data to edge servers in real-world scenarios, we propose to use the ongoing assistance of CloudCNN to further improve the accuracy of the shallow model. Experimental results show that EdgeCNN can reduce the average response time of cognitive services by up to 55.08 percent and improve accuracy by up to 26.70 percent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oh应助科研通管家采纳,获得10
刚刚
刚刚
英姑应助科研通管家采纳,获得10
1秒前
LJ发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
HY完成签到,获得积分10
3秒前
Loooong发布了新的文献求助10
3秒前
yy完成签到,获得积分10
3秒前
狂野忆文发布了新的文献求助10
4秒前
abc完成签到,获得积分10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
狂野忆文发布了新的文献求助10
5秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027