化学
离子
离子迁移光谱法
质谱法
分析化学(期刊)
色谱法
有机化学
作者
Cameron N. Naylor,Mark E. Ridgeway,Melvin A. Park,Brian H. Clowers
标识
DOI:10.1021/jasms.0c00151
摘要
A key aspect of reduced pressure ion mobility spectrometry (IMS) experiments is to identify experimental conditions that minimize the role of collisional energy transfer that allows for assessing effective ion-neutral collision cross sections of metabolites, peptides, and proteins in "native-like" or compact states. Across two separate experimental campaigns using a prototype trapped ion mobility spectrometer (TIMS) coupled to a time-of-flight mass spectrometer, we present independent findings that support the results recently published by Morsa et al. using a different set of thermometer ions (Morsa et al. Anal. Chem. 2020, 92 (6), 4573−4582). First, using five para-substituted benzylammonium ions, we conducted survival yield experiments to assess ion internal energy across different experimental settings. Results from the present set of experiments illustrate that greater ion heating occurs at lower pressures and higher voltage settings applied to the TIMS. At the "softest" settings where the benzylammonium thermometer ions have an effective average energy of 1.73 eV, we observe the majority of bradykinin in the compact state. Under more extreme operating conditions where the energy of the benzylammonium ions varies from 1.83 to 1.86 eV, the bradykinin transitions from the compact to the elongated state. In addition to independently confirming the findings of Morsa et al., we also report the mobilities for the benzylammonium parent and fragment ions using the tandem drift-tube-TIMS calibration procedure described by Naylor et al. ( J. Am. Soc. Mass Spectrom. 2019, 30 (10), 2152−2162).
科研通智能强力驱动
Strongly Powered by AbleSci AI