ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach

计算机科学 人工智能 分割 眼底(子宫) 图像分割 特征提取 像素 计算机视觉 特征(语言学) 模式识别(心理学) 医学影像学 眼科 医学 语言学 哲学
作者
Érick Oliveira Rodrigues,Aura Conci,Panos Liatsis
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 3507-3519 被引量:57
标识
DOI:10.1109/jbhi.2020.2999257
摘要

Vascular structures in the retina contain important information for the detection and analysis of ocular diseases, including age-related macular degeneration, diabetic retinopathy and glaucoma. Commonly used modalities in diagnosis of these diseases are fundus photography, scanning laser ophthalmoscope (SLO) and fluorescein angiography (FA). Typically, retinal vessel segmentation is carried out either manually or interactively, which makes it time consuming and prone to human errors. In this research, we propose a new multi-modal framework for vessel segmentation called ELEMENT (vEsseL sEgmentation using Machine lEarning and coNnecTivity). This framework consists of feature extraction and pixel-based classification using region growing and machine learning. The proposed features capture complementary evidence based on grey level and vessel connectivity properties. The latter information is seamlessly propagated through the pixels at the classification phase. ELEMENT reduces inconsistencies and speeds up the segmentation throughput. We analyze and compare the performance of the proposed approach against state-of-the-art vessel segmentation algorithms in three major groups of experiments, for each of the ocular modalities. Our method produced higher overall performance, with an overall accuracy of 97.40%, compared to 25 of the 26 state-of-the-art approaches, including six works based on deep learning, evaluated on the widely known DRIVE fundus image dataset. In the case of the STARE, CHASE-DB, VAMPIRE FA, IOSTAR SLO and RC-SLO datasets, the proposed framework outperformed all of the state-of-the-art methods with accuracies of 98.27%, 97.78%, 98.34%, 98.04% and 98.35%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ljy完成签到,获得积分10
刚刚
1秒前
Damiao发布了新的文献求助10
1秒前
mww完成签到 ,获得积分10
2秒前
贾不可发布了新的文献求助10
2秒前
万能图书馆应助sssss采纳,获得10
3秒前
传奇3应助喜洋洋采纳,获得10
3秒前
3秒前
彭于晏应助qise采纳,获得30
3秒前
5秒前
bkagyin应助清萍红檀采纳,获得10
5秒前
6秒前
6秒前
6秒前
迅速曲奇发布了新的文献求助10
7秒前
8秒前
研友_VZG7GZ应助6713采纳,获得10
8秒前
9秒前
郜郜嗳发布了新的文献求助10
9秒前
10秒前
百里如雪发布了新的文献求助10
11秒前
lalala发布了新的文献求助10
11秒前
12秒前
小蘑菇应助过时的雅霜采纳,获得10
13秒前
ding应助huoyan2006采纳,获得10
15秒前
15秒前
张锐发布了新的文献求助10
15秒前
16秒前
Orange应助高会和采纳,获得10
16秒前
16秒前
splaker7完成签到,获得积分10
20秒前
21秒前
醒醒发布了新的文献求助10
21秒前
迅速曲奇完成签到,获得积分10
22秒前
22秒前
22秒前
22秒前
李健应助xiaoxiang_1001采纳,获得10
24秒前
齐芮发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Football, Violence and Social Identity 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554085
求助须知:如何正确求助?哪些是违规求助? 3129855
关于积分的说明 9384472
捐赠科研通 2828994
什么是DOI,文献DOI怎么找? 1555358
邀请新用户注册赠送积分活动 725982
科研通“疑难数据库(出版商)”最低求助积分说明 715352