Judgment and optimization of video image recognition in obstacle detection in intelligent vehicle

障碍物 过程(计算) 计算机视觉 人工智能 计算机科学 航程(航空) 图像(数学) 模拟 工程类 政治学 操作系统 航空航天工程 法学
作者
Qing Li,Tao He,Guodong Fu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:136: 106406-106406 被引量:13
标识
DOI:10.1016/j.ymssp.2019.106406
摘要

The objective is to solve the problem of image recognition in intelligent vehicles and optimize the judgment of obstacles and the planning of subsequent routes of intelligent vehicles. Methods: The machine vision technology is used to collect images of relevant road segments, process these images with graying and binarization methods, and simulate the proposed method to observe its effect through data collection. Through the analysis of continuous direct-through driving after encountering the obstacles, it is found that the intelligent vehicles have small traveling errors once the routes are identified and planned. In addition, the error in the x-direction is no more than 0.006 m, while the error in the y-direction is no more than 0.003 m. The recognition effect of the vehicle has reached the expected result. Through the analysis of turning and rotary driving after encountering the obstacles, it is found that after the intelligent vehicles have identified the obstacles and planned the routes, a sudden change in the amplitude of the curve during the turn is caused. In addition, during the turning driving, the error in the x-direction is no more than 0.02 m, while the error in the y-direction is no more than 0.05 m. During the rotary driving, the error in the x-direction is no more than 0.03 m, while the error in the y-direction is not more than 0.04 m. The error variation range is also within the allowable error range. Through the research in this paper, it is found that the error of intelligent vehicle is within the allowable range and achieves the expected effect. Although there are some shortcomings in the experimental process, it can still provide an experimental basis for obstruction detection and route planning of intelligent vehicles in the later stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Ava应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
wu8577应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得100
2秒前
wu8577应助科研通管家采纳,获得10
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
wu8577应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
ANG发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
LuoPanpan完成签到,获得积分10
5秒前
5秒前
缓慢荔枝应助文件撤销了驳回
5秒前
msy发布了新的文献求助10
7秒前
一只特立独行的朱完成签到,获得积分10
7秒前
wang发布了新的文献求助10
10秒前
10秒前
简单的笑蓝完成签到 ,获得积分10
10秒前
csr完成签到,获得积分10
14秒前
20秒前
msy完成签到,获得积分10
20秒前
焜少完成签到,获得积分10
22秒前
22秒前
23秒前
阿童木完成签到,获得积分10
24秒前
ZZL应助野性的沉鱼采纳,获得20
24秒前
嘻嘻哈哈完成签到 ,获得积分10
26秒前
Orange应助博修采纳,获得30
29秒前
SciGPT应助LQ采纳,获得10
29秒前
阚曦发布了新的文献求助10
31秒前
香妃完成签到,获得积分10
31秒前
魔幻慕梅完成签到,获得积分10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382