Judgment and optimization of video image recognition in obstacle detection in intelligent vehicle

障碍物 过程(计算) 计算机视觉 人工智能 计算机科学 航程(航空) 图像(数学) 模拟 工程类 政治学 操作系统 航空航天工程 法学
作者
Qing Li,Tao He,Guodong Fu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:136: 106406-106406 被引量:13
标识
DOI:10.1016/j.ymssp.2019.106406
摘要

The objective is to solve the problem of image recognition in intelligent vehicles and optimize the judgment of obstacles and the planning of subsequent routes of intelligent vehicles. Methods: The machine vision technology is used to collect images of relevant road segments, process these images with graying and binarization methods, and simulate the proposed method to observe its effect through data collection. Through the analysis of continuous direct-through driving after encountering the obstacles, it is found that the intelligent vehicles have small traveling errors once the routes are identified and planned. In addition, the error in the x-direction is no more than 0.006 m, while the error in the y-direction is no more than 0.003 m. The recognition effect of the vehicle has reached the expected result. Through the analysis of turning and rotary driving after encountering the obstacles, it is found that after the intelligent vehicles have identified the obstacles and planned the routes, a sudden change in the amplitude of the curve during the turn is caused. In addition, during the turning driving, the error in the x-direction is no more than 0.02 m, while the error in the y-direction is no more than 0.05 m. During the rotary driving, the error in the x-direction is no more than 0.03 m, while the error in the y-direction is not more than 0.04 m. The error variation range is also within the allowable error range. Through the research in this paper, it is found that the error of intelligent vehicle is within the allowable range and achieves the expected effect. Although there are some shortcomings in the experimental process, it can still provide an experimental basis for obstruction detection and route planning of intelligent vehicles in the later stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww发布了新的文献求助10
刚刚
刚刚
2秒前
4秒前
LeuinPonsgi完成签到,获得积分10
5秒前
6秒前
ww完成签到,获得积分10
7秒前
夜白完成签到,获得积分0
8秒前
12秒前
14秒前
14秒前
XYZ完成签到 ,获得积分10
14秒前
薛定谔的猫完成签到,获得积分10
14秒前
15秒前
陈陈发布了新的文献求助10
16秒前
16秒前
李健的粉丝团团长应助tlx采纳,获得10
16秒前
18秒前
18秒前
大模型应助拼搏尔风采纳,获得10
19秒前
小葵完成签到 ,获得积分10
20秒前
大力千雁发布了新的文献求助10
20秒前
yy完成签到 ,获得积分10
20秒前
共享精神应助xiaogui采纳,获得10
21秒前
吹皱一湖春水完成签到 ,获得积分10
24秒前
mpenny77完成签到,获得积分10
24秒前
阿司匹林发布了新的文献求助10
26秒前
汉堡包应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
英姑应助科研通管家采纳,获得10
30秒前
田様应助科研通管家采纳,获得10
30秒前
30秒前
Ava应助科研通管家采纳,获得20
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
31秒前
佳佳发布了新的文献求助10
31秒前
追寻完成签到 ,获得积分10
31秒前
DO完成签到,获得积分10
32秒前
nmm完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162896
求助须知:如何正确求助?哪些是违规求助? 2813938
关于积分的说明 7902359
捐赠科研通 2473525
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187