Judgment and optimization of video image recognition in obstacle detection in intelligent vehicle

障碍物 过程(计算) 计算机视觉 人工智能 计算机科学 航程(航空) 图像(数学) 模拟 工程类 政治学 操作系统 航空航天工程 法学
作者
Qing Li,Tao He,Guodong Fu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:136: 106406-106406 被引量:13
标识
DOI:10.1016/j.ymssp.2019.106406
摘要

The objective is to solve the problem of image recognition in intelligent vehicles and optimize the judgment of obstacles and the planning of subsequent routes of intelligent vehicles. Methods: The machine vision technology is used to collect images of relevant road segments, process these images with graying and binarization methods, and simulate the proposed method to observe its effect through data collection. Through the analysis of continuous direct-through driving after encountering the obstacles, it is found that the intelligent vehicles have small traveling errors once the routes are identified and planned. In addition, the error in the x-direction is no more than 0.006 m, while the error in the y-direction is no more than 0.003 m. The recognition effect of the vehicle has reached the expected result. Through the analysis of turning and rotary driving after encountering the obstacles, it is found that after the intelligent vehicles have identified the obstacles and planned the routes, a sudden change in the amplitude of the curve during the turn is caused. In addition, during the turning driving, the error in the x-direction is no more than 0.02 m, while the error in the y-direction is no more than 0.05 m. During the rotary driving, the error in the x-direction is no more than 0.03 m, while the error in the y-direction is not more than 0.04 m. The error variation range is also within the allowable error range. Through the research in this paper, it is found that the error of intelligent vehicle is within the allowable range and achieves the expected effect. Although there are some shortcomings in the experimental process, it can still provide an experimental basis for obstruction detection and route planning of intelligent vehicles in the later stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常幼菱发布了新的文献求助10
刚刚
2秒前
活力听白完成签到,获得积分10
2秒前
4秒前
三点发布了新的文献求助20
4秒前
4秒前
淡淡一手给淡淡一手的求助进行了留言
4秒前
科研通AI6应助蓝兰采纳,获得10
4秒前
所所应助学术小混子采纳,获得10
4秒前
现代书雪完成签到,获得积分20
4秒前
5秒前
zhou完成签到,获得积分10
7秒前
LUCK发布了新的文献求助30
7秒前
8秒前
活力听白发布了新的文献求助150
8秒前
O基米德发布了新的文献求助10
10秒前
10秒前
上官若男应助萱萱采纳,获得10
10秒前
11秒前
迅速的完成签到 ,获得积分10
11秒前
冲冲小将发布了新的文献求助10
12秒前
平常幼菱完成签到,获得积分10
12秒前
情怀应助飞飞飞飞飞飞采纳,获得10
13秒前
bkagyin应助孝顺的孤晴采纳,获得10
15秒前
霍云云完成签到,获得积分10
15秒前
15秒前
领导范儿应助lzw采纳,获得10
15秒前
谢灵运发布了新的文献求助10
15秒前
小二郎应助阳佟水蓉采纳,获得10
16秒前
量子星尘发布了新的文献求助50
17秒前
蓝兰完成签到,获得积分10
17秒前
17秒前
酷波er应助木子采纳,获得10
18秒前
19秒前
20秒前
万能图书馆应助123qwe采纳,获得10
20秒前
能干的早晨完成签到 ,获得积分10
21秒前
123456发布了新的文献求助10
21秒前
去月球数星星完成签到,获得积分20
23秒前
我是老大应助CEJ采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4887640
求助须知:如何正确求助?哪些是违规求助? 4172488
关于积分的说明 12949193
捐赠科研通 3933203
什么是DOI,文献DOI怎么找? 2158144
邀请新用户注册赠送积分活动 1176528
关于科研通互助平台的介绍 1080791