Machine learning analysis to identify the association between risk factors and onset of nosocomial diarrhea: a retrospective cohort study

接收机工作特性 随机森林 腹泻 医学 特征选择 支持向量机 人工智能 机器学习 队列 计算机科学 内科学
作者
Ken Kurisu,Kazuhiro Yoshiuchi,Kei Ogino,Toshimi Oda
出处
期刊:PeerJ [PeerJ]
卷期号:7: e7969-e7969 被引量:8
标识
DOI:10.7717/peerj.7969
摘要

Although several risk factors for nosocomial diarrhea have been identified, the detail of association between these factors and onset of nosocomial diarrhea, such as degree of importance or temporal pattern of influence, remains unclear. We aimed to determine the association between risk factors and onset of nosocomial diarrhea using machine learning algorithms.We retrospectively collected data of patients with acute cerebral infarction. Seven variables, including age, sex, modified Rankin Scale (mRS) score, and number of days of antibiotics, tube feeding, proton pump inhibitors, and histamine 2-receptor antagonist use, were used in the analysis. We split the data into a training dataset and independant test dataset. Based on the training dataset, we developed a random forest, support vector machine (SVM), and radial basis function (RBF) network model. By calculating an area under the curve (AUC) of the receiver operating characteristic curve using 5-fold cross-validation, we performed feature selection and hyperparameter optimization in each model. According to their final performances, we selected the optimal model and also validated it in the independent test dataset. Based on the selected model, we visualized the variable importance and the association between each variable and the outcome using partial dependence plots.Two-hundred and eighteen patients were included. In the cross-validation within the training dataset, the random forest model achieved an AUC of 0.944, which was higher than in the SVM and RBF network models. The random forest model also achieved an AUC of 0.832 in the independent test dataset. Tube feeding use days, mRS score, antibiotic use days, age and sex were strongly associated with the onset of nosocomial diarrhea, in this order. Tube feeding use had an inverse U-shaped association with the outcome. The mRS score and age had a convex downward and increasing association, while antibiotic use had a convex upward association with the outcome.We revealed the degree of importance and temporal pattern of the influence of several risk factors for nosocomial diarrhea, which could help clinicians manage nosocomial diarrhea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的语梦完成签到 ,获得积分10
3秒前
tt完成签到 ,获得积分10
3秒前
万康完成签到,获得积分10
6秒前
李健应助飞云采纳,获得10
6秒前
爱炸鸡也爱烧烤完成签到 ,获得积分10
6秒前
7秒前
jsxxdr完成签到,获得积分10
7秒前
8秒前
汉堡包应助kiki采纳,获得10
8秒前
Shayulajiao发布了新的文献求助10
9秒前
啊哈发布了新的文献求助10
9秒前
852应助橘络采纳,获得10
9秒前
10秒前
10秒前
jsxxdr发布了新的文献求助10
11秒前
11秒前
听雨眠发布了新的文献求助10
12秒前
无语完成签到,获得积分10
13秒前
111发布了新的文献求助10
13秒前
MGQQbg完成签到 ,获得积分10
13秒前
啦啦啦发布了新的文献求助20
14秒前
15秒前
tqs发布了新的文献求助30
16秒前
研友_LmeK4L发布了新的文献求助10
16秒前
17秒前
吴军霄完成签到,获得积分10
18秒前
wind完成签到,获得积分10
19秒前
Niar完成签到 ,获得积分10
21秒前
怡然问晴应助Shayulajiao采纳,获得10
21秒前
Sinner完成签到,获得积分10
23秒前
秃头小宝贝完成签到,获得积分0
25秒前
大个应助卷卷516采纳,获得10
25秒前
25秒前
22D发布了新的文献求助10
27秒前
zhang完成签到,获得积分20
27秒前
Sinner发布了新的文献求助30
27秒前
28秒前
30秒前
吼隆隆隆发布了新的文献求助10
30秒前
柠小檬c发布了新的文献求助10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458734
求助须知:如何正确求助?哪些是违规求助? 3053505
关于积分的说明 9036831
捐赠科研通 2742695
什么是DOI,文献DOI怎么找? 1504509
科研通“疑难数据库(出版商)”最低求助积分说明 695319
邀请新用户注册赠送积分活动 694519