材料科学
阳极
阴极
电解质
化学工程
导电体
储能
离子
纳米技术
电极
电化学
复合材料
物理化学
功率(物理)
化学
物理
量子力学
工程类
作者
Xiang Hu,Jing Wang,Junwei Li,Genxiang Wang,Junxiang Chen,Guobao Zhong,Hongbing Zhan,Zhenhai Wen
标识
DOI:10.1002/adfm.201907677
摘要
Abstract Transition‐metal dichalcogenides have emerged as promising anodes of sodium ion batteries (SIBs). Their practical SIB application calls for an easy‐to‐handle synthetic technique capable of fabricating favorable properties with high conductivity and stable structure. Here, a solvothermal strategy is reported for bottom‐up self‐assembling of nanoflowers' building block, i.e., conductive interlayer‐expanded 2D WS 2 nanosheets thanks to in situ interlayer modification by nitrogen‐doped carbon matrix, into 3D hollow microflower bud‐like hybrids (H‐WS 2 @NC). The 3D nano/microhierarchical hollow structures are constructed by conductive interlayer‐expanded WS 2 nanosheets' building blocks, providing abundant channels facilitating mass transport/electrons transfer, robust protection layer to avoid the direct contact between WS 2 nanosheets and electrolyte, sufficient inner space for accommodating volume variation, and decreased ions diffusion energy barrier for accelerating electrochemical kinetics, as revealed by density functional theory calculations. As such, the 3D H‐WS 2 @NC hybrids exhibit quite attractive sodium storage performance with high reversible capacity, superior rate capability, and impressively long cycling life. The 3D H‐WS 2 @NC is further verified as anode of sodium‐ion full cell pairing with Na 3 V 2 (PO4) 3 /rGO cathode, delivering a stable reversible capacity of 296 mAh g −1 at 0.5 A g −1 with high energy density of 128 Wh kg −1 total at a power density of 386 W kg −1 total .
科研通智能强力驱动
Strongly Powered by AbleSci AI