清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning to Generate in Silico Chemical Property Libraries and Candidate Molecules for Small Molecule Identification in Complex Samples

化学 生物信息学 化学空间 鉴定(生物学) 代表(政治) 分子 财产(哲学) 生物系统 集合(抽象数据类型) 化学数据库 自编码 人工智能 计算机科学 药物发现 深度学习 生物化学 有机化学 基因 政治学 法学 程序设计语言 哲学 认识论 植物 政治 生物
作者
Sean Colby,Jamie Nuñez,Nathan O. Hodas,Courtney D. Corley,Ryan Renslow
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (2): 1720-1729 被引量:72
标识
DOI:10.1021/acs.analchem.9b02348
摘要

Comprehensive and unambiguous identification of small molecules in complex samples will revolutionize our understanding of the role of metabolites in biological systems. Existing and emerging technologies have enabled measurement of chemical properties of molecules in complex mixtures and, in concert, are sensitive enough to resolve even stereoisomers. Despite these experimental advances, small molecule identification is inhibited by (i) chemical reference libraries (e.g., mass spectra, collision cross section, and other measurable property libraries) representing <1% of known molecules, limiting the number of possible identifications, and (ii) the lack of a method to generate candidate matches directly from experimental features (i.e., without a library). To this end, we developed a variational autoencoder (VAE) to learn a continuous numerical, or latent, representation of molecular structure to expand reference libraries for small molecule identification. We extended the VAE to include a chemical property decoder, trained as a multitask network, in order to shape the latent representation such that it assembles according to desired chemical properties. The approach is unique in its application to metabolomics and small molecule identification, with its focus on properties that can be obtained from experimental measurements (m/z, CCS) paired with its training paradigm, which involved a cascade of transfer learning iterations. First, molecular representation is learned from a large data set of structures with m/z labels. Next, in silico property values are used to continue training, as experimental property data is limited. Finally, the network is further refined by being trained with the experimental data. This allows the network to learn as much as possible at each stage, enabling success with progressively smaller data sets without overfitting. Once trained, the network can be used to predict chemical properties directly from structure, as well as generate candidate structures with desired chemical properties. Our approach is orders of magnitude faster than first-principles simulation for CCS property prediction. Additionally, the ability to generate novel molecules along manifolds, defined by chemical property analogues, positions DarkChem as highly useful in a number of application areas, including metabolomics and small molecule identification, drug discovery and design, chemical forensics, and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rikka完成签到,获得积分20
23秒前
友好寻琴完成签到 ,获得积分10
50秒前
miyavi完成签到,获得积分10
1分钟前
orixero应助小鳄鱼夸夸采纳,获得10
3分钟前
3分钟前
4分钟前
gwbk完成签到,获得积分10
4分钟前
nuliguan完成签到 ,获得积分10
4分钟前
方白秋完成签到,获得积分10
5分钟前
辛谷方松永旭完成签到 ,获得积分10
5分钟前
chcmy完成签到 ,获得积分0
5分钟前
陈思完成签到,获得积分10
5分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
huangzsdy完成签到,获得积分10
6分钟前
肆肆完成签到,获得积分10
6分钟前
yuntong完成签到 ,获得积分10
7分钟前
老宇126发布了新的文献求助20
7分钟前
TiY完成签到 ,获得积分10
7分钟前
共享精神应助zimo采纳,获得10
8分钟前
9分钟前
9分钟前
9分钟前
老宇126发布了新的文献求助20
10分钟前
桐桐应助zxc采纳,获得10
10分钟前
10分钟前
10分钟前
10分钟前
10分钟前
习月阳完成签到,获得积分10
10分钟前
10分钟前
10分钟前
11分钟前
暮雪残梅完成签到 ,获得积分10
11分钟前
汉堡包应助老宇126采纳,获得20
11分钟前
merrylake完成签到 ,获得积分10
11分钟前
冲刺的小王完成签到,获得积分10
11分钟前
所所应助勤劳的铭采纳,获得10
11分钟前
扑流萤发布了新的文献求助10
12分钟前
扑流萤完成签到,获得积分10
12分钟前
13分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244770
求助须知:如何正确求助?哪些是违规求助? 2888417
关于积分的说明 8252853
捐赠科研通 2556875
什么是DOI,文献DOI怎么找? 1385454
科研通“疑难数据库(出版商)”最低求助积分说明 650161
邀请新用户注册赠送积分活动 626269