Deep Learning to Generate in Silico Chemical Property Libraries and Candidate Molecules for Small Molecule Identification in Complex Samples

化学 生物信息学 化学空间 鉴定(生物学) 代表(政治) 分子 财产(哲学) 生物系统 集合(抽象数据类型) 化学数据库 自编码 人工智能 计算机科学 药物发现 深度学习 生物化学 有机化学 基因 生物 植物 哲学 认识论 政治 政治学 法学 程序设计语言
作者
Sean Colby,Jamie Nuñez,Nathan O. Hodas,Courtney D. Corley,Ryan Renslow
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (2): 1720-1729 被引量:72
标识
DOI:10.1021/acs.analchem.9b02348
摘要

Comprehensive and unambiguous identification of small molecules in complex samples will revolutionize our understanding of the role of metabolites in biological systems. Existing and emerging technologies have enabled measurement of chemical properties of molecules in complex mixtures and, in concert, are sensitive enough to resolve even stereoisomers. Despite these experimental advances, small molecule identification is inhibited by (i) chemical reference libraries (e.g., mass spectra, collision cross section, and other measurable property libraries) representing <1% of known molecules, limiting the number of possible identifications, and (ii) the lack of a method to generate candidate matches directly from experimental features (i.e., without a library). To this end, we developed a variational autoencoder (VAE) to learn a continuous numerical, or latent, representation of molecular structure to expand reference libraries for small molecule identification. We extended the VAE to include a chemical property decoder, trained as a multitask network, in order to shape the latent representation such that it assembles according to desired chemical properties. The approach is unique in its application to metabolomics and small molecule identification, with its focus on properties that can be obtained from experimental measurements (m/z, CCS) paired with its training paradigm, which involved a cascade of transfer learning iterations. First, molecular representation is learned from a large data set of structures with m/z labels. Next, in silico property values are used to continue training, as experimental property data is limited. Finally, the network is further refined by being trained with the experimental data. This allows the network to learn as much as possible at each stage, enabling success with progressively smaller data sets without overfitting. Once trained, the network can be used to predict chemical properties directly from structure, as well as generate candidate structures with desired chemical properties. Our approach is orders of magnitude faster than first-principles simulation for CCS property prediction. Additionally, the ability to generate novel molecules along manifolds, defined by chemical property analogues, positions DarkChem as highly useful in a number of application areas, including metabolomics and small molecule identification, drug discovery and design, chemical forensics, and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
IAN关闭了IAN文献求助
刚刚
Lucas应助茉莉采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
天天快乐应助陈陈采纳,获得10
3秒前
3秒前
wxr发布了新的文献求助10
5秒前
那一年盛夏完成签到,获得积分10
5秒前
Owen应助勤恳冰淇淋采纳,获得30
5秒前
沙xiaohan发布了新的文献求助10
6秒前
6秒前
HappyPlato完成签到,获得积分10
7秒前
范达克完成签到 ,获得积分10
8秒前
556发布了新的文献求助10
8秒前
Orange应助韦娜采纳,获得10
8秒前
8秒前
小二完成签到,获得积分10
9秒前
支半雪发布了新的文献求助10
9秒前
Owen应助心灵美的大地采纳,获得10
10秒前
10秒前
情怀应助琪琪扬扬采纳,获得10
11秒前
11秒前
12秒前
天天快乐应助刘优秀采纳,获得10
12秒前
13秒前
13秒前
15秒前
QQ完成签到,获得积分10
16秒前
18秒前
18秒前
18秒前
科研通AI6应助皮飞111采纳,获得10
18秒前
19秒前
20秒前
徐徐徐徐徐徐徐完成签到,获得积分20
20秒前
houyan发布了新的文献求助10
21秒前
吃饭了发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572718
求助须知:如何正确求助?哪些是违规求助? 4658668
关于积分的说明 14722640
捐赠科研通 4598568
什么是DOI,文献DOI怎么找? 2523879
邀请新用户注册赠送积分活动 1494564
关于科研通互助平台的介绍 1464604