已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning to Generate in Silico Chemical Property Libraries and Candidate Molecules for Small Molecule Identification in Complex Samples

化学 生物信息学 化学空间 鉴定(生物学) 代表(政治) 分子 财产(哲学) 生物系统 集合(抽象数据类型) 化学数据库 自编码 人工智能 计算机科学 药物发现 深度学习 生物化学 有机化学 基因 生物 植物 哲学 认识论 政治 政治学 法学 程序设计语言
作者
Sean Colby,Jamie Nuñez,Nathan O. Hodas,Courtney D. Corley,Ryan Renslow
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (2): 1720-1729 被引量:72
标识
DOI:10.1021/acs.analchem.9b02348
摘要

Comprehensive and unambiguous identification of small molecules in complex samples will revolutionize our understanding of the role of metabolites in biological systems. Existing and emerging technologies have enabled measurement of chemical properties of molecules in complex mixtures and, in concert, are sensitive enough to resolve even stereoisomers. Despite these experimental advances, small molecule identification is inhibited by (i) chemical reference libraries (e.g., mass spectra, collision cross section, and other measurable property libraries) representing <1% of known molecules, limiting the number of possible identifications, and (ii) the lack of a method to generate candidate matches directly from experimental features (i.e., without a library). To this end, we developed a variational autoencoder (VAE) to learn a continuous numerical, or latent, representation of molecular structure to expand reference libraries for small molecule identification. We extended the VAE to include a chemical property decoder, trained as a multitask network, in order to shape the latent representation such that it assembles according to desired chemical properties. The approach is unique in its application to metabolomics and small molecule identification, with its focus on properties that can be obtained from experimental measurements (m/z, CCS) paired with its training paradigm, which involved a cascade of transfer learning iterations. First, molecular representation is learned from a large data set of structures with m/z labels. Next, in silico property values are used to continue training, as experimental property data is limited. Finally, the network is further refined by being trained with the experimental data. This allows the network to learn as much as possible at each stage, enabling success with progressively smaller data sets without overfitting. Once trained, the network can be used to predict chemical properties directly from structure, as well as generate candidate structures with desired chemical properties. Our approach is orders of magnitude faster than first-principles simulation for CCS property prediction. Additionally, the ability to generate novel molecules along manifolds, defined by chemical property analogues, positions DarkChem as highly useful in a number of application areas, including metabolomics and small molecule identification, drug discovery and design, chemical forensics, and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sep完成签到 ,获得积分10
刚刚
1秒前
小羊咩完成签到 ,获得积分0
1秒前
2秒前
4秒前
LaffiteElla发布了新的文献求助20
4秒前
4秒前
呼啦啦啦应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
呼啦啦啦应助科研通管家采纳,获得10
6秒前
呼啦啦啦应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得30
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
甜美坤完成签到 ,获得积分10
6秒前
呼啦啦啦应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
黄大小姐完成签到,获得积分10
7秒前
开放素完成签到 ,获得积分0
8秒前
苏家豪完成签到,获得积分20
8秒前
赵赵完成签到 ,获得积分10
8秒前
罗皮特完成签到 ,获得积分10
9秒前
Anlocia完成签到 ,获得积分10
9秒前
不安诗云发布了新的文献求助10
11秒前
大头发布了新的文献求助10
11秒前
13秒前
pollen06完成签到,获得积分10
15秒前
含蓄又亦完成签到,获得积分10
16秒前
xinasoooo完成签到 ,获得积分10
17秒前
哈哈哈完成签到,获得积分10
17秒前
小青加油发布了新的文献求助10
17秒前
大头完成签到,获得积分10
17秒前
多亿点完成签到 ,获得积分10
18秒前
Parsec完成签到 ,获得积分10
18秒前
轨迹应助冷静新烟采纳,获得20
19秒前
梵凡完成签到,获得积分10
19秒前
百事从欢完成签到 ,获得积分10
20秒前
21秒前
巨型肥猫完成签到 ,获得积分10
23秒前
24秒前
traveller应助Wiz111采纳,获得20
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754409
求助须知:如何正确求助?哪些是违规求助? 5486788
关于积分的说明 15380103
捐赠科研通 4893032
什么是DOI,文献DOI怎么找? 2631695
邀请新用户注册赠送积分活动 1579638
关于科研通互助平台的介绍 1535372