Deep Learning to Generate in Silico Chemical Property Libraries and Candidate Molecules for Small Molecule Identification in Complex Samples

化学 生物信息学 化学空间 鉴定(生物学) 代表(政治) 分子 财产(哲学) 生物系统 集合(抽象数据类型) 化学数据库 自编码 人工智能 计算机科学 药物发现 深度学习 生物化学 有机化学 基因 生物 植物 哲学 认识论 政治 政治学 法学 程序设计语言
作者
Sean Colby,Jamie Nuñez,Nathan O. Hodas,Courtney D. Corley,Ryan Renslow
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (2): 1720-1729 被引量:72
标识
DOI:10.1021/acs.analchem.9b02348
摘要

Comprehensive and unambiguous identification of small molecules in complex samples will revolutionize our understanding of the role of metabolites in biological systems. Existing and emerging technologies have enabled measurement of chemical properties of molecules in complex mixtures and, in concert, are sensitive enough to resolve even stereoisomers. Despite these experimental advances, small molecule identification is inhibited by (i) chemical reference libraries (e.g., mass spectra, collision cross section, and other measurable property libraries) representing <1% of known molecules, limiting the number of possible identifications, and (ii) the lack of a method to generate candidate matches directly from experimental features (i.e., without a library). To this end, we developed a variational autoencoder (VAE) to learn a continuous numerical, or latent, representation of molecular structure to expand reference libraries for small molecule identification. We extended the VAE to include a chemical property decoder, trained as a multitask network, in order to shape the latent representation such that it assembles according to desired chemical properties. The approach is unique in its application to metabolomics and small molecule identification, with its focus on properties that can be obtained from experimental measurements (m/z, CCS) paired with its training paradigm, which involved a cascade of transfer learning iterations. First, molecular representation is learned from a large data set of structures with m/z labels. Next, in silico property values are used to continue training, as experimental property data is limited. Finally, the network is further refined by being trained with the experimental data. This allows the network to learn as much as possible at each stage, enabling success with progressively smaller data sets without overfitting. Once trained, the network can be used to predict chemical properties directly from structure, as well as generate candidate structures with desired chemical properties. Our approach is orders of magnitude faster than first-principles simulation for CCS property prediction. Additionally, the ability to generate novel molecules along manifolds, defined by chemical property analogues, positions DarkChem as highly useful in a number of application areas, including metabolomics and small molecule identification, drug discovery and design, chemical forensics, and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lemonnnnnn_发布了新的文献求助10
刚刚
科目三应助Kane采纳,获得10
刚刚
Orange应助韭黄采纳,获得10
刚刚
Tracy.完成签到,获得积分10
刚刚
羊青丝发布了新的文献求助10
刚刚
孙佳美发布了新的文献求助10
刚刚
可达燊发布了新的文献求助10
1秒前
柒七完成签到,获得积分10
1秒前
在水一方应助wzz采纳,获得10
1秒前
crank完成签到,获得积分10
2秒前
小蘑菇应助刻苦惜萍采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
善学以致用应助上上签采纳,获得10
2秒前
2秒前
3秒前
taoatao发布了新的文献求助10
3秒前
zzz发布了新的文献求助10
3秒前
小猴子应助糖炒小白云采纳,获得10
3秒前
科研通AI6应助xyh采纳,获得10
4秒前
4秒前
善学以致用应助可达燊采纳,获得10
4秒前
4秒前
crank发布了新的文献求助10
5秒前
5秒前
幽默不评完成签到 ,获得积分10
5秒前
慕青应助眼睛大的比巴卜采纳,获得10
5秒前
星辰大海应助zjq采纳,获得10
6秒前
vina发布了新的文献求助10
6秒前
乐观的灭龙完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
su完成签到 ,获得积分10
6秒前
大方岩完成签到,获得积分10
6秒前
6秒前
自信彩虹完成签到 ,获得积分10
6秒前
支半雪发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478