亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning to Generate in Silico Chemical Property Libraries and Candidate Molecules for Small Molecule Identification in Complex Samples

化学 生物信息学 化学空间 鉴定(生物学) 代表(政治) 分子 财产(哲学) 生物系统 集合(抽象数据类型) 化学数据库 自编码 人工智能 计算机科学 药物发现 深度学习 生物化学 有机化学 基因 生物 植物 哲学 认识论 政治 政治学 法学 程序设计语言
作者
Sean Colby,Jamie Nuñez,Nathan O. Hodas,Courtney D. Corley,Ryan Renslow
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (2): 1720-1729 被引量:72
标识
DOI:10.1021/acs.analchem.9b02348
摘要

Comprehensive and unambiguous identification of small molecules in complex samples will revolutionize our understanding of the role of metabolites in biological systems. Existing and emerging technologies have enabled measurement of chemical properties of molecules in complex mixtures and, in concert, are sensitive enough to resolve even stereoisomers. Despite these experimental advances, small molecule identification is inhibited by (i) chemical reference libraries (e.g., mass spectra, collision cross section, and other measurable property libraries) representing <1% of known molecules, limiting the number of possible identifications, and (ii) the lack of a method to generate candidate matches directly from experimental features (i.e., without a library). To this end, we developed a variational autoencoder (VAE) to learn a continuous numerical, or latent, representation of molecular structure to expand reference libraries for small molecule identification. We extended the VAE to include a chemical property decoder, trained as a multitask network, in order to shape the latent representation such that it assembles according to desired chemical properties. The approach is unique in its application to metabolomics and small molecule identification, with its focus on properties that can be obtained from experimental measurements (m/z, CCS) paired with its training paradigm, which involved a cascade of transfer learning iterations. First, molecular representation is learned from a large data set of structures with m/z labels. Next, in silico property values are used to continue training, as experimental property data is limited. Finally, the network is further refined by being trained with the experimental data. This allows the network to learn as much as possible at each stage, enabling success with progressively smaller data sets without overfitting. Once trained, the network can be used to predict chemical properties directly from structure, as well as generate candidate structures with desired chemical properties. Our approach is orders of magnitude faster than first-principles simulation for CCS property prediction. Additionally, the ability to generate novel molecules along manifolds, defined by chemical property analogues, positions DarkChem as highly useful in a number of application areas, including metabolomics and small molecule identification, drug discovery and design, chemical forensics, and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
StH完成签到,获得积分20
28秒前
kk完成签到 ,获得积分10
37秒前
50秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
田様应助海饼干采纳,获得10
1分钟前
1分钟前
1分钟前
海饼干发布了新的文献求助10
1分钟前
1分钟前
1分钟前
师兄的结果复现不出完成签到,获得积分10
1分钟前
善学以致用应助曾泰平采纳,获得10
2分钟前
2分钟前
曾泰平发布了新的文献求助10
2分钟前
黑翅鸢完成签到 ,获得积分10
2分钟前
斯文败类应助归海亦云采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助50
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
徐小树发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4995482
求助须知:如何正确求助?哪些是违规求助? 4242486
关于积分的说明 13216168
捐赠科研通 4038471
什么是DOI,文献DOI怎么找? 2209726
邀请新用户注册赠送积分活动 1220507
关于科研通互助平台的介绍 1139443