Deep Learning to Generate in Silico Chemical Property Libraries and Candidate Molecules for Small Molecule Identification in Complex Samples

化学 生物信息学 化学空间 鉴定(生物学) 代表(政治) 分子 财产(哲学) 生物系统 集合(抽象数据类型) 化学数据库 自编码 人工智能 计算机科学 药物发现 深度学习 生物化学 有机化学 基因 生物 植物 哲学 认识论 政治 政治学 法学 程序设计语言
作者
Sean Colby,Jamie Nuñez,Nathan O. Hodas,Courtney D. Corley,Ryan Renslow
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (2): 1720-1729 被引量:72
标识
DOI:10.1021/acs.analchem.9b02348
摘要

Comprehensive and unambiguous identification of small molecules in complex samples will revolutionize our understanding of the role of metabolites in biological systems. Existing and emerging technologies have enabled measurement of chemical properties of molecules in complex mixtures and, in concert, are sensitive enough to resolve even stereoisomers. Despite these experimental advances, small molecule identification is inhibited by (i) chemical reference libraries (e.g., mass spectra, collision cross section, and other measurable property libraries) representing <1% of known molecules, limiting the number of possible identifications, and (ii) the lack of a method to generate candidate matches directly from experimental features (i.e., without a library). To this end, we developed a variational autoencoder (VAE) to learn a continuous numerical, or latent, representation of molecular structure to expand reference libraries for small molecule identification. We extended the VAE to include a chemical property decoder, trained as a multitask network, in order to shape the latent representation such that it assembles according to desired chemical properties. The approach is unique in its application to metabolomics and small molecule identification, with its focus on properties that can be obtained from experimental measurements (m/z, CCS) paired with its training paradigm, which involved a cascade of transfer learning iterations. First, molecular representation is learned from a large data set of structures with m/z labels. Next, in silico property values are used to continue training, as experimental property data is limited. Finally, the network is further refined by being trained with the experimental data. This allows the network to learn as much as possible at each stage, enabling success with progressively smaller data sets without overfitting. Once trained, the network can be used to predict chemical properties directly from structure, as well as generate candidate structures with desired chemical properties. Our approach is orders of magnitude faster than first-principles simulation for CCS property prediction. Additionally, the ability to generate novel molecules along manifolds, defined by chemical property analogues, positions DarkChem as highly useful in a number of application areas, including metabolomics and small molecule identification, drug discovery and design, chemical forensics, and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xie完成签到,获得积分20
刚刚
谦让的鹏煊完成签到,获得积分10
刚刚
lyk2815完成签到,获得积分10
1秒前
1秒前
碧蓝的睫毛完成签到,获得积分10
1秒前
学术地瓜发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6应助11采纳,获得10
4秒前
慕青应助azorworld6采纳,获得10
4秒前
4秒前
一路向北发布了新的文献求助10
4秒前
黑夜的冰之歌完成签到,获得积分10
4秒前
4秒前
liu发布了新的文献求助10
5秒前
6秒前
6秒前
七点半完成签到,获得积分10
6秒前
Criminology34应助ywhys采纳,获得10
7秒前
orixero应助WDZ采纳,获得10
8秒前
8秒前
降木沉檀完成签到,获得积分10
8秒前
HAOS发布了新的文献求助30
9秒前
归海亦云发布了新的文献求助10
9秒前
天天快乐应助AoAoo采纳,获得10
9秒前
silk发布了新的文献求助10
9秒前
10秒前
用户253182发布了新的文献求助10
10秒前
ZZWSWJ发布了新的文献求助10
10秒前
和谐饼干发布了新的文献求助10
11秒前
学术地瓜完成签到,获得积分10
13秒前
Yangyang发布了新的文献求助200
13秒前
April完成签到,获得积分10
14秒前
糖宝发布了新的文献求助10
14秒前
14秒前
科研小白发布了新的文献求助10
14秒前
初雪完成签到,获得积分20
14秒前
默默平文发布了新的文献求助10
15秒前
16秒前
着急的书本完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618349
求助须知:如何正确求助?哪些是违规求助? 4703244
关于积分的说明 14921791
捐赠科研通 4757233
什么是DOI,文献DOI怎么找? 2550059
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299