清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning to Generate in Silico Chemical Property Libraries and Candidate Molecules for Small Molecule Identification in Complex Samples

化学 生物信息学 化学空间 鉴定(生物学) 代表(政治) 分子 财产(哲学) 生物系统 集合(抽象数据类型) 化学数据库 自编码 人工智能 计算机科学 药物发现 深度学习 生物化学 有机化学 基因 生物 植物 哲学 认识论 政治 政治学 法学 程序设计语言
作者
Sean Colby,Jamie Nuñez,Nathan O. Hodas,Courtney D. Corley,Ryan Renslow
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (2): 1720-1729 被引量:72
标识
DOI:10.1021/acs.analchem.9b02348
摘要

Comprehensive and unambiguous identification of small molecules in complex samples will revolutionize our understanding of the role of metabolites in biological systems. Existing and emerging technologies have enabled measurement of chemical properties of molecules in complex mixtures and, in concert, are sensitive enough to resolve even stereoisomers. Despite these experimental advances, small molecule identification is inhibited by (i) chemical reference libraries (e.g., mass spectra, collision cross section, and other measurable property libraries) representing <1% of known molecules, limiting the number of possible identifications, and (ii) the lack of a method to generate candidate matches directly from experimental features (i.e., without a library). To this end, we developed a variational autoencoder (VAE) to learn a continuous numerical, or latent, representation of molecular structure to expand reference libraries for small molecule identification. We extended the VAE to include a chemical property decoder, trained as a multitask network, in order to shape the latent representation such that it assembles according to desired chemical properties. The approach is unique in its application to metabolomics and small molecule identification, with its focus on properties that can be obtained from experimental measurements (m/z, CCS) paired with its training paradigm, which involved a cascade of transfer learning iterations. First, molecular representation is learned from a large data set of structures with m/z labels. Next, in silico property values are used to continue training, as experimental property data is limited. Finally, the network is further refined by being trained with the experimental data. This allows the network to learn as much as possible at each stage, enabling success with progressively smaller data sets without overfitting. Once trained, the network can be used to predict chemical properties directly from structure, as well as generate candidate structures with desired chemical properties. Our approach is orders of magnitude faster than first-principles simulation for CCS property prediction. Additionally, the ability to generate novel molecules along manifolds, defined by chemical property analogues, positions DarkChem as highly useful in a number of application areas, including metabolomics and small molecule identification, drug discovery and design, chemical forensics, and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助神秘猎牛人采纳,获得10
1秒前
慕青应助rebee采纳,获得10
10秒前
凉面完成签到 ,获得积分10
16秒前
21秒前
lily完成签到 ,获得积分10
21秒前
rebee发布了新的文献求助10
26秒前
49秒前
施光玲44931完成签到 ,获得积分10
54秒前
54秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
shhoing应助科研通管家采纳,获得10
57秒前
隐形曼青应助科研通管家采纳,获得10
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
在水一方应助白华苍松采纳,获得10
1分钟前
英勇星月完成签到 ,获得积分10
1分钟前
asdwind完成签到,获得积分10
1分钟前
huiliang完成签到,获得积分10
1分钟前
1分钟前
1分钟前
游泳池完成签到,获得积分10
1分钟前
DGYT7786完成签到 ,获得积分10
1分钟前
理想三寻完成签到,获得积分10
1分钟前
qianzhihe2完成签到,获得积分10
1分钟前
2分钟前
cheng完成签到 ,获得积分10
2分钟前
今后应助白华苍松采纳,获得10
2分钟前
勤qin完成签到 ,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
uppercrusteve完成签到,获得积分10
3分钟前
田田完成签到 ,获得积分10
4分钟前
优美的冰巧完成签到 ,获得积分10
4分钟前
娇气的天亦完成签到 ,获得积分10
4分钟前
甲壳虫完成签到 ,获得积分10
4分钟前
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
jenningseastera完成签到,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539037
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566695
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1452982