Deep Learning to Generate in Silico Chemical Property Libraries and Candidate Molecules for Small Molecule Identification in Complex Samples

化学 生物信息学 化学空间 鉴定(生物学) 代表(政治) 分子 财产(哲学) 生物系统 集合(抽象数据类型) 化学数据库 自编码 人工智能 计算机科学 药物发现 深度学习 生物化学 有机化学 基因 生物 植物 哲学 认识论 政治 政治学 法学 程序设计语言
作者
Sean Colby,Jamie Nuñez,Nathan O. Hodas,Courtney D. Corley,Ryan Renslow
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (2): 1720-1729 被引量:72
标识
DOI:10.1021/acs.analchem.9b02348
摘要

Comprehensive and unambiguous identification of small molecules in complex samples will revolutionize our understanding of the role of metabolites in biological systems. Existing and emerging technologies have enabled measurement of chemical properties of molecules in complex mixtures and, in concert, are sensitive enough to resolve even stereoisomers. Despite these experimental advances, small molecule identification is inhibited by (i) chemical reference libraries (e.g., mass spectra, collision cross section, and other measurable property libraries) representing <1% of known molecules, limiting the number of possible identifications, and (ii) the lack of a method to generate candidate matches directly from experimental features (i.e., without a library). To this end, we developed a variational autoencoder (VAE) to learn a continuous numerical, or latent, representation of molecular structure to expand reference libraries for small molecule identification. We extended the VAE to include a chemical property decoder, trained as a multitask network, in order to shape the latent representation such that it assembles according to desired chemical properties. The approach is unique in its application to metabolomics and small molecule identification, with its focus on properties that can be obtained from experimental measurements (m/z, CCS) paired with its training paradigm, which involved a cascade of transfer learning iterations. First, molecular representation is learned from a large data set of structures with m/z labels. Next, in silico property values are used to continue training, as experimental property data is limited. Finally, the network is further refined by being trained with the experimental data. This allows the network to learn as much as possible at each stage, enabling success with progressively smaller data sets without overfitting. Once trained, the network can be used to predict chemical properties directly from structure, as well as generate candidate structures with desired chemical properties. Our approach is orders of magnitude faster than first-principles simulation for CCS property prediction. Additionally, the ability to generate novel molecules along manifolds, defined by chemical property analogues, positions DarkChem as highly useful in a number of application areas, including metabolomics and small molecule identification, drug discovery and design, chemical forensics, and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
没所谓完成签到,获得积分10
刚刚
百里雅青发布了新的文献求助10
1秒前
XL完成签到,获得积分10
1秒前
chen驳回了Orange应助
1秒前
阿牛完成签到,获得积分10
1秒前
zxb完成签到,获得积分10
2秒前
3秒前
cuberblue完成签到 ,获得积分10
4秒前
吴女士完成签到,获得积分10
5秒前
领导范儿应助卢健辉采纳,获得10
6秒前
6秒前
雨雨完成签到,获得积分10
6秒前
12334完成签到,获得积分10
6秒前
obsession发布了新的文献求助10
7秒前
袁青寒完成签到,获得积分10
7秒前
高光飞完成签到 ,获得积分10
8秒前
duoyu应助晓湫采纳,获得20
8秒前
9秒前
在水一方应助陨yue采纳,获得10
9秒前
小二郎应助LKSkywalker采纳,获得10
10秒前
所所应助累哥采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助150
12秒前
彭云完成签到,获得积分10
12秒前
14秒前
morii完成签到,获得积分10
14秒前
银子吃好的完成签到,获得积分10
15秒前
15秒前
16秒前
罐装冰块发布了新的文献求助10
16秒前
wanci应助11采纳,获得10
16秒前
cc123完成签到,获得积分10
17秒前
慕青应助wwww采纳,获得10
17秒前
累哥完成签到,获得积分20
18秒前
Zxx完成签到,获得积分10
18秒前
xu发布了新的文献求助10
19秒前
jacob258发布了新的文献求助10
19秒前
大模型应助lmg采纳,获得10
19秒前
辛卫铎发布了新的文献求助10
19秒前
薛定谔的猫完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953820
求助须知:如何正确求助?哪些是违规求助? 3499685
关于积分的说明 11096658
捐赠科研通 3230222
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801514