A Single-Shot Region-Adaptive Network for Myotendinous Junction Segmentation in Muscular Ultrasound Images

分割 人工智能 深度学习 计算机科学 卷积神经网络 计算机视觉 肌腱 模式识别(心理学) 人工神经网络 跟踪(教育) 解剖 医学 心理学 教育学
作者
Guangquan Zhou,En-Ze Huo,Mei Yuan,Ping Zhou,Ruoli Wang,Kai‐Ni Wang,Yang Chen,Xiaopu He
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (12): 2531-2542 被引量:17
标识
DOI:10.1109/tuffc.2020.2979481
摘要

Tracking the myotendinous junction (MTJ) in consecutive ultrasound images is crucial for understanding the mechanics and pathological conditions of the muscle-tendon unit. However, the lack of reliable and efficient identification of MTJ due to poor image quality and boundary ambiguity restricts its application in motion analysis. In recent years, with the rapid development of deep learning, the region-based convolution neural network (RCNN) has shown great potential in the field of simultaneous objection detection and instance segmentation in medical images. This article proposes a region-adaptive network (RAN) to localize MTJ region and to segment it in a single shot. Our model learns about the salient information of MTJ with the help of a composite architecture. Herein, a region-based multitask learning network explores the region containing MTJ, while a parallel end-to-end U-shaped path extracts the MTJ structure from the adaptively selected region for combating data imbalance and boundary ambiguity. By demonstrating the ultrasound images of the gastrocnemius, we showed that the RAN achieves superior segmentation performance when compared with the state-of-the-art Mask RCNN method with an average Dice score of 80.1%. Our proposed method is robust and reliable for advanced muscle and tendon function examinations obtained by ultrasound imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗美女应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
李健的小迷弟应助Mine采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得30
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
1秒前
ShawnJohn应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
天行马完成签到,获得积分10
1秒前
ShawnJohn应助科研通管家采纳,获得10
1秒前
雨姐科研应助科研通管家采纳,获得10
1秒前
雨姐科研应助科研通管家采纳,获得10
1秒前
CangZm1完成签到 ,获得积分10
1秒前
ShawnJohn应助科研通管家采纳,获得10
1秒前
雨姐科研应助科研通管家采纳,获得10
1秒前
stinkyfish完成签到,获得积分20
2秒前
冰河完成签到 ,获得积分10
2秒前
雨姐科研应助科研通管家采纳,获得10
2秒前
罗美女应助科研通管家采纳,获得10
2秒前
sqxl完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Harden完成签到,获得积分10
2秒前
3秒前
stand应助youyuguang采纳,获得10
3秒前
Edward完成签到 ,获得积分10
4秒前
王加一发布了新的文献求助10
4秒前
星星完成签到,获得积分10
4秒前
小马甲应助忧郁的白竹采纳,获得10
5秒前
沉默洋葱完成签到,获得积分10
6秒前
王亚荣完成签到,获得积分10
6秒前
198完成签到 ,获得积分10
6秒前
周山山完成签到 ,获得积分10
6秒前
7秒前
村长热爱美丽完成签到 ,获得积分10
7秒前
jimmy完成签到,获得积分10
7秒前
称心的不言完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715880
求助须知:如何正确求助?哪些是违规求助? 5237687
关于积分的说明 15275397
捐赠科研通 4866497
什么是DOI,文献DOI怎么找? 2613022
邀请新用户注册赠送积分活动 1563137
关于科研通互助平台的介绍 1520689