结晶度
能量转换效率
结晶
钙钛矿(结构)
材料科学
微晶
化学工程
Crystal(编程语言)
制作
分析化学(期刊)
纳米技术
光电子学
结晶学
复合材料
计算机科学
化学
有机化学
冶金
工程类
病理
医学
程序设计语言
替代医学
作者
Jiantao Wang,Fanxu Meng,Ruxue Li,Shaoqing Chen,Xiaoyu Huang,Jing Xu,Xiaosong Lin,Rui Chen,Hongkai Wu,Hsing‐Lin Wang
出处
期刊:Solar RRL
[Wiley]
日期:2020-03-19
卷期号:4 (5)
被引量:22
标识
DOI:10.1002/solr.202000091
摘要
Solution‐processed perovskite precursors, especially for MAPbBr 3 ‐assisted FAPbI 3 crystallization, has been noted to achieve high power conversion efficiency (PCE) for perovskite solar cells (PSCs). However, this low‐temperature processed (FAPbI 3 ) x (MAPbBr 3 ) 1− x typical precursor derived from commercial products (FAI, PbI 2 , MABr, and PbBr 2 ) suffers from environmental sensitivity, poor film crystallinity and less than ideal device reproducibility. Herein, (FAPbI 3 ) x (MAPbBr 3 ) 1– x (0.80 ≤ x ≤ 0.90)‐based planar inverted PSCs are fabricated, employing grinded monocrystalline MAPbBr 3 and powdered polycrystalline FAPbI 3 as precursors. The champion device with optimal molar ratio x = 0.85 comprising highly crystalline larger‐grained perovskite film with enhanced carrier transport kinetics and reduced trap‐state density exhibits boosted efficiency reaching 20.50%, which shows a 22.90% improvement over typical precursors with a PCE of 16.68%. In addition, the crystal powder precursor yields obvious film stability under ambient conditions (23 °C, 65–85% humidity) for 150 days and improved device storage stability in the glove box within two months. This protocol using stock crystal powders for perovskite precursor formulation provides a relatively facile and reproducible device fabrication route for the commercialization of PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI