摩擦电效应
材料科学
纳米发生器
自愈水凝胶
标度系数
佩多:嘘
可伸缩电子设备
复合材料
光电子学
纳米技术
压电
制作
电气工程
数码产品
病理
工程类
高分子化学
替代医学
图层(电子)
医学
作者
Hongling Sun,Yi Zhao,Chunfeng Wang,Kangkang Zhou,Chao Yan,Guoqiang Zheng,Jiajia Huang,Kun Dai,Chuntai Liu,Changyu Shen
出处
期刊:Nano Energy
[Elsevier]
日期:2020-07-02
卷期号:76: 105035-105035
被引量:266
标识
DOI:10.1016/j.nanoen.2020.105035
摘要
Hydrogels with integrated attributes of stretchability, conductivity, transparency and robustness have been emerging because of their promising applications in wearable devices, human health monitoring, advanced intelligent systems and energy harvesting. In this paper, we developed stretchable and conductive hydrogels via hybrid double networks approach by combination of rigid physically cross-linked gelatin, tough chemically cross-linked polyacrylamide (PAM) and poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) as conducting component. The double networks can be further interlocked by using physical entanglements and abundant dynamic hydrogen bonds, contributing to the improved mechanical properties and self-recovery ability. A transparent and wearable strain sensor is fabricated by sandwiching the hydrogels with two layers of adhesive polyurethane (PU) tape, exhibiting good sensitivity (gauge factor (GF) = 1.58), ultra-wide sensing range of 0-2850% strain, short response time of 200 ms and superior durability and reproducibility (1200 cycles), which endows the sensitive monitors with effective discernibility for detecting intricate human motions. Importantly, the hydrogel-based device can act as a highly stretchable (300% strain) triboelectric nanogenerator (STENG) for efficient energy harvesting, giving a short circuit current (ISC) of 26.9 μA, open circuit voltage (VOC) of 383.8 V and short-circuit transferred charge (QSC) of 92 nC. The integrated abilities of strain sensing and energy harvesting promise the hydrogels for high performance self-powered wearable devices and stretchable power sources.
科研通智能强力驱动
Strongly Powered by AbleSci AI