Spatial prediction of permafrost occurrence in Sikkim Himalayas using logistic regression, random forests, support vector machines and neural networks

永久冻土 支持向量机 随机森林 数据集 仰角(弹道) 遥感 人工神经网络 人工智能 概率分布 机器学习 地质学 计算机科学 统计 数学 几何学 海洋学
作者
Prashant Baral,Mohd Anul Haq
出处
期刊:Geomorphology [Elsevier BV]
卷期号:371: 107331-107331 被引量:30
标识
DOI:10.1016/j.geomorph.2020.107331
摘要

We have generated permafrost probability distribution maps (10 m resolution) for the north-eastern Himalayan region in Sikkim using remote sensing measurements and machine learning algorithms. Four machine learning algorithms, logistic regression, random forests, support vector machines and neural networks, and two different sets of input data set, were used to generate a total of 8 machine learning models and hence 8 permafrost probability distribution maps. The first set of input data set included surface reflectance from atmospherically corrected Sentinel-2A spectral bands, elevation and slope parameters while the second set of input data set included mean annul air temperature (MAAT) and potential incoming solar radiation (PISR). Permafrost probability distribution maps obtained from the 8 models show reasonable agreement in the total spatial extent of permafrost occurrence but dissimilarities in the pattern of probability distribution. Accuracy assessment results are more optimistic towards models developed using spectral reflectance, elevation and slope parameters as input data set. Nevertheless, 5 out of 8 models agree that around 60% of total area under observation is highly likely to contain permafrost. This congruence in outputs, despite the use of different machine learning algorithms and separate sets of input data set, establishes reliability in the application of machine learning models for the preliminary estimation of permafrost distribution for remote and data-scarce Himalayan region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助耍酷白云采纳,获得10
刚刚
德国克大夫完成签到,获得积分10
1秒前
hbhbj完成签到,获得积分10
1秒前
翼_完成签到,获得积分20
1秒前
2秒前
3秒前
CodeCraft应助Suu采纳,获得10
4秒前
4秒前
4秒前
隐形曼青应助mealies采纳,获得10
6秒前
浩多多发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
李健的小迷弟应助Hexagram采纳,获得10
9秒前
9秒前
9秒前
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226