A physical process and machine learning combined hydrological model for daily streamflow simulations of large watersheds with limited observation data

水流 计算机科学 水文学(农业) 人工神经网络 机器学习 稳健性(进化) 数据挖掘 极限学习机 水文模型 人工智能 流域 地图学 地质学 气候学 基因 生物化学 化学 岩土工程 地理
作者
Shuyu Yang,Dawen Yang,Jinsong Chen,Jerasorn Santisirisomboon,Weiwei Lü,Baoxu Zhao
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:590: 125206-125206 被引量:123
标识
DOI:10.1016/j.jhydrol.2020.125206
摘要

Physically distributed hydrological models are effective in hydrological simulations of large river basins, but the complex characteristics of hydrological features limit their application. An easy-to-use and high-efficiency hydrological model is needed for efficient water resource management in practice. Machine learning (ML) based models have the potential to provide fast mapping pathways between meteorological predictors and hydrological responses without detailed descriptions of the corresponding physical processes. However, the extensive data requirements, ignoring of spatial variability and poor performance for extreme flows limit the application of ML models. This study attempts to develop an ML-based hydrological model by combining physically based distributed hydrological model with an artificial neural networks (ANN), computer vision (CV) and a categorization approach (CA). To solve the insufficient training problem, we use a physically distributed hydrological model (GBHM) together with a stochastic rainfall generator to generate a large amount of synthetic data (GBHM-ANN). To improve the extreme flow simulation, we add the categorization approach into GBHM-ANN (GBHM-ANN-CA). To capture the spatial variability of the predictors, we also use a local binary pattern-based computer vision method to form GBHM-ANN-CA-CV model. The effectiveness of the three modeling approaches are demonstrated by synthetic case studies. We finally evaluate GBHM-ANN-CA-CV using the real data from the upper Chao Phraya Basin in Thailand. The results show that the prediction accuracy of our new data-driven model is greatly improved in data-limited watersheds. Specifically, the CV extracted spatial information can improve the robustness of the data-driven hydrological model, and the CA can greatly improve high flow simulations. The combined model yields a satisfactory accuracy for long-term daily streamflow simulations. This study demonstrates the potential of ML-based hydrological models in water resource management, especially in changing environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鱼儿游啊游完成签到,获得积分10
刚刚
刘先生发布了新的文献求助10
1秒前
猫猫侠发布了新的文献求助10
2秒前
小高同学完成签到,获得积分10
3秒前
3秒前
1234567发布了新的文献求助10
3秒前
5秒前
7秒前
9秒前
9秒前
他年我若成道完成签到,获得积分10
10秒前
12秒前
比巴卜发布了新的文献求助10
12秒前
notcc发布了新的文献求助10
13秒前
NagatoYuki完成签到,获得积分10
14秒前
漂亮的笑柳完成签到,获得积分20
14秒前
15秒前
JamesPei应助kdtaaaa采纳,获得10
15秒前
18秒前
情红锐完成签到,获得积分10
18秒前
Lucas应助称心小鸭子采纳,获得10
18秒前
18秒前
notcc完成签到,获得积分10
20秒前
沫沫发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
清晨牛完成签到,获得积分10
22秒前
隐形曼青应助esyncoms采纳,获得10
22秒前
qaqa发布了新的文献求助10
23秒前
小竖完成签到 ,获得积分10
23秒前
xiaowang完成签到 ,获得积分10
23秒前
24秒前
一条咸鱼发布了新的文献求助10
24秒前
WYK完成签到 ,获得积分10
24秒前
semigreen完成签到 ,获得积分10
25秒前
25秒前
25秒前
万安安完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495