Modeling and Solving of Joint Flood Control Operation of Large-Scale Reservoirs: A Case Study in the Middle and Upper Yangtze River in China

大洪水 防洪 粒子群优化 环境科学 计算机科学 水文学(农业) 土木工程 水资源管理 数学优化 地质学 工程类 地理 岩土工程 数学 算法 考古
作者
Gang Zha,Jianzhong Zhou,Xin Yang,Wei Fang,Ling Dai,Quansen Wang,Xiaoling Ding
出处
期刊:Water [MDPI AG]
卷期号:13 (1): 41-41 被引量:16
标识
DOI:10.3390/w13010041
摘要

Flood disasters are the most frequent and most severe natural disasters in most countries around the world. Reservoir flood operation is an important method to reduce flood losses. When there are multiple reservoirs and flood control points in the basin, it is difficult to use reservoirs separately to fully realize their flood control potential. However, the multi-reservoir joint flood control operation is a multi-objective, multi-constrained, multi-dimensional, nonlinear, and strong-transition feature decision-making problem, and these characteristics make modeling and solving very difficult. Therefore, a large-scale reservoirs flood control operation modeling method is innovatively proposed, and Dynamic Programming (DP) combined with the Progressive Optimality Algorithm (POA) and Particle Swarm Optimization (PSO) methods, DP-POA-PSO, are designed to efficiently solve the optimal operation model. The middle and upper Yangtze River was chosen as a case study. Six key reservoirs in the basin were considered, including Xiluodu (XLD), Xiangjiaba (XJB), Pubugou (PBG), Tingzikou (TZK), Goupitan (GPT), and Three Gorges (TG). Studies have shown that DP-POA-PSO can effectively solve the optimal operation model. Compared with the current operation method, the joint flood control optimal operation makes the flood control point reach the flood control standard, moreover, in the event of the flood with a return period of 1000 years, Jingjiang, the most critical flood control point of the Yangtze River, does not require flood diversion, and the volume of flood diversion in Chenglingji is also greatly reduced.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Abby完成签到,获得积分10
刚刚
刚刚
su123发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
烟花应助YJ采纳,获得10
2秒前
gsd发布了新的文献求助10
2秒前
cai关闭了cai文献求助
2秒前
嘟嘟完成签到,获得积分10
3秒前
3秒前
大力帽子应助zyyyyyyyy采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
comm发布了新的文献求助10
4秒前
4秒前
西西发布了新的文献求助10
5秒前
5秒前
爆米花应助杜ss采纳,获得10
5秒前
复杂雪一完成签到,获得积分10
5秒前
枫1完成签到,获得积分10
5秒前
eee发布了新的文献求助10
6秒前
难过的翎应助滴答采纳,获得10
6秒前
FashionBoy应助滴答采纳,获得30
6秒前
充电宝应助威武不言采纳,获得10
6秒前
元正完成签到,获得积分10
6秒前
7秒前
cct发布了新的文献求助20
7秒前
在水一方应助忧心的洙采纳,获得10
7秒前
木子汐完成签到,获得积分10
7秒前
8秒前
8秒前
竹纤维完成签到 ,获得积分10
8秒前
满意的天完成签到 ,获得积分10
9秒前
元正发布了新的文献求助10
9秒前
陈cc发布了新的文献求助10
10秒前
姜夔完成签到,获得积分10
10秒前
万物春完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692816
求助须知:如何正确求助?哪些是违规求助? 5090275
关于积分的说明 15209741
捐赠科研通 4849989
什么是DOI,文献DOI怎么找? 2601457
邀请新用户注册赠送积分活动 1553204
关于科研通互助平台的介绍 1511374