Dissipative Heating, Fatigue and Fracture Behaviour of Rubber Under Multiaxial Loading

材料科学 耗散系统 消散 复合材料 天然橡胶 变形(气象学) 冯·米塞斯屈服准则 工作(物理) 断裂力学 剪切(地质) 断裂(地质) 结构工程 机械 有限元法 机械工程 热力学 工程类 物理
作者
S. Dedova,Konrad Schneider,Markus Stommel,Gert Heinrich
出处
期刊:Advances in Polymer Science [Springer Science+Business Media]
卷期号:: 421-443 被引量:8
标识
DOI:10.1007/12_2020_75
摘要

Nowadays, different concepts to investigate the crack propagation in rubber materials are used. Most of them are based on the investigation of uniaxial loaded specimens and without taking into account the dissipative aspects of deformation. Rubber parts are used for different kinds of applications like tires, vibration damper, sealing parts, gaskets, diaphragms, etc. These parts are often subjected to multiaxial cyclic loading during operation. To utilize the whole mechanical potential of the rubber, it is necessary to investigate and characterize the material and crack behaviour under application relevant conditions. This study will work out that regardless of the deformation state (equibiaxial, asymmetrical biaxial, "pure shear", uniaxial) the same amount of energy is dissipated if the amount of the equivalent strain (von Mises) is equal. The present paper investigates, how different states of deformation possibly differently triggers the competitive dissipative processes of the material with the aim, to work out the different amount of dissipative effects as a function of the deformation state. It will be further shown how these effects influence the situation at the crack tip during cyclic loading. The correlations between von Mises equivalent strain, dissipative heating and crack propagation were analysed and used for the characterization of the material behaviour at the crack tip. It is shown how the dissipated energy can be estimated and how the data describe the heating of the and the heat transfer to the surrounding in detail. The dissipated conditions in the whole sample and in the vicinity of the crack tip correlate with the crack behaviour. The dependence of the crack growth rate and thermal state at the crack tip from the von Mises strain is discussed in detail. A physically motivated model approximates the strain at the crack tip and, finally, estimates the relationship between strain, energy dissipation and temperature state of the rubber material in the vicinity of the crack tip. The used rubber is a solution-SBR loaded with 50 phr carbon black. The experiments were performed on a biaxial test machine from Coesfeld GmbH & Co. KG. The measurements were done using an optical digital image correlation (DIC) system ARAMIS from GOM, Germany, to measure and analyse the strain. The thermal behaviour was determined by infrared thermography from InfraTec, Germany.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jzmupyj完成签到,获得积分10
6秒前
四夕完成签到 ,获得积分10
8秒前
秋水完成签到 ,获得积分10
8秒前
友好傲白完成签到,获得积分10
9秒前
Cy完成签到 ,获得积分10
9秒前
10秒前
yhao完成签到,获得积分10
10秒前
幸福妙柏完成签到 ,获得积分10
15秒前
jzmulyl完成签到,获得积分10
16秒前
Dr.Tang完成签到 ,获得积分10
17秒前
Zurlliant完成签到,获得积分10
17秒前
Frank完成签到 ,获得积分10
19秒前
嗝嗝完成签到,获得积分10
19秒前
22秒前
北城完成签到 ,获得积分10
23秒前
余生9979完成签到 ,获得积分10
25秒前
桃花源的瓶起子完成签到 ,获得积分10
26秒前
ipcy完成签到 ,获得积分10
26秒前
阿白完成签到 ,获得积分10
32秒前
wanidamm完成签到,获得积分10
33秒前
Yh完成签到,获得积分10
34秒前
36秒前
康轲完成签到,获得积分10
38秒前
芝麻福福完成签到,获得积分10
38秒前
包子完成签到,获得积分10
38秒前
豆浆来点蒜泥完成签到,获得积分10
40秒前
852应助4865采纳,获得10
41秒前
42秒前
橙子完成签到 ,获得积分10
47秒前
eterny完成签到,获得积分10
48秒前
biubiubiu发布了新的文献求助30
48秒前
糖炒李子完成签到 ,获得积分10
49秒前
50秒前
一苇以航完成签到 ,获得积分10
51秒前
叶子兮完成签到,获得积分10
52秒前
山丘完成签到,获得积分10
52秒前
yuan完成签到,获得积分10
53秒前
JYX完成签到 ,获得积分10
53秒前
倪小呆完成签到 ,获得积分10
54秒前
huanfid完成签到 ,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736760
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020338
捐赠科研通 2997407
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782070
科研通“疑难数据库(出版商)”最低求助积分说明 749656