分数拉普拉斯
基态
物理
内哈里歧管
组合数学
国家(计算机科学)
数学物理
能量(信号处理)
功能(生物学)
拉普拉斯算子
数学分析
非线性系统
数学
量子力学
算法
进化生物学
生物
作者
Chungen Liu,Hua-Bo Zhang
出处
期刊:Communications on Pure and Applied Analysis
[American Institute of Mathematical Sciences]
日期:2021-01-01
卷期号:20 (2): 817-834
被引量:1
摘要
In this paper, we consider the existence of a ground state nodal solution and a ground state solution, energy doubling property and asymptotic behavior of solutions of the following fractional critical problem \begin{document}$ \begin{equation*} \begin{cases} (a+ b\int_{\mathbb{R}^{3}}(|(-\Delta)^{\alpha/2}u|^{2})dx)(-\Delta)^{\alpha}u+V(x)u+K(x)\phi u = |u|^{2^{\ast}-2}u+ \kappa f(x,u),\\ (-\Delta)^{\beta}\phi = K(x)u^{2}, \quad x\in\mathbb{R}^{3}, \end{cases} \end{equation*} $\end{document} where $ a, b,\kappa $ are positive parameters, $ \alpha\in(\frac{3}{4},1),\beta\in(0,1) $, and $ 2^{\ast}_{\alpha} = \frac{6}{3-2\alpha} $, $ (-\Delta)^{\alpha} $ stands for the fractional Laplacian. By the nodal Nehari manifold method, for each $ b>0 $, we obtain a ground state nodal solution $ u_{b} $ and a ground-state solution $ v_b $ to this problem when $ \kappa\gg 1 $, where the nonlinear function $ f:\mathbb{R}^{3}\times\mathbb{R}\rightarrow\mathbb{R} $ is a Carathéodory function. We also give an analysis on the behavior of $ u_{b} $ as the parameter $ b\to 0 $.
科研通智能强力驱动
Strongly Powered by AbleSci AI