Machine learned feature identification for predicting phase and Young's modulus of low-, medium- and high-entropy alloys

电负性 材料科学 高熵合金 热力学 杨氏模量 模数 原子半径 熔点 熵(时间箭头) 冶金 复合材料 合金 化学 物理 有机化学 量子力学
作者
Ankit Roy,Tomas F. Babuska,Brandon A. Krick,Ganesh Balasubramanian
出处
期刊:Scripta Materialia [Elsevier BV]
卷期号:185: 152-158 被引量:123
标识
DOI:10.1016/j.scriptamat.2020.04.016
摘要

The growth in the interest and research on high-entropy alloys (HEAs) over the last decade is due to their unique material phases responsible for their remarkable structural properties. A conventional approach to discovering new HEAs requires scavenging an enormous search space consisting of over half a trillion new material compositions comprising of three to six principal elements. Machine learning has emerged as a potential tool to rapidly accelerate the search for and design of new materials, due to its rapidity, scalability, and now, reasonably accurate material property predictions. Here, we implement machine learning tools, to predict the crystallographic phase and Young's modulus of low-, medium- and high-entropy alloys composed of a family of 5 refractory elements. Our results, in conjunction with experimental validation, reveal that the mean melting point and electronegativity difference exert the strongest contributions to the phase formation in these alloys, while the melting temperature and the enthalpy of mixing are the key features impacting the Young's modulus of these materials. Additionally, and more importantly, we find that the entropy of mixing only negligibly influences the phase or the Young's modulus, reigniting the issue of its actual impact on the material phase and properties of HEAs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的衫发布了新的文献求助10
刚刚
刚刚
大胆绮兰完成签到 ,获得积分10
1秒前
1秒前
Lau完成签到,获得积分10
3秒前
3秒前
Soey发布了新的文献求助10
3秒前
Soche完成签到,获得积分10
4秒前
笑点低的咖啡完成签到,获得积分10
4秒前
酷酷的盼山完成签到,获得积分20
4秒前
4秒前
4秒前
5秒前
54466完成签到,获得积分10
5秒前
所所应助吴祥坤采纳,获得10
5秒前
6秒前
6秒前
落梦完成签到 ,获得积分10
7秒前
小丹发布了新的文献求助10
7秒前
8秒前
YY完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
huangbing123发布了新的文献求助10
10秒前
10秒前
Zu发布了新的文献求助10
11秒前
wang完成签到,获得积分10
11秒前
11秒前
12秒前
愉快的代玉完成签到,获得积分10
12秒前
12秒前
洪婉馨发布了新的文献求助10
13秒前
Hello应助wlw采纳,获得10
13秒前
13秒前
JamesPei应助sssssssssss采纳,获得10
14秒前
54466发布了新的文献求助10
14秒前
zz完成签到,获得积分10
14秒前
wang发布了新的文献求助10
14秒前
hooke完成签到,获得积分10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344