Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression

随机森林 遥感 支持向量机 反射率 积雪 回归 环境科学 估计 森林覆盖 回归分析 封面(代数) 地质学 计算机科学 统计 气象学 人工智能 地理 机器学习 数学 生态学 经济 管理 工程类 物理 光学 生物 机械工程
作者
Semih Kuter
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:255: 112294-112294 被引量:35
标识
DOI:10.1016/j.rse.2021.112294
摘要

Abstract This study; i) investigates the suitability of two frequently employed machine learning algorithms in remote sensing, namely, random forests (RFs) and support vector regression (SVR) for fractional snow cover (FSC) estimation from MODIS Terra data, and ii) compares them with the previously proposed artificial neural networks (ANNs) and multivariate adaptive regression splines (MARS) methods over an heterogeneous and complex alpine terrain. The dataset comprises 20 Landsat 8 – MODIS image pairs that belong to European Alps acquired from Apr 2013 to Dec 2016. The fifteen image pairs are used to generate the training dataset necessary to build the models, whereas the remaining five are employed as a separate test dataset. The reference FSC maps are derived from the binary classified Landsat 8 snow/no snow maps at 30 m resolution. In order to assess the effect of sampling type and sample size, nine different training datasets are generated. The RF and SVR models are trained accordingly by using various settings of model tuning parameters. During the training of the models, MODIS top-of-atmosphere reflectance values of bands 1–7, NDSI, NDVI and land cover class are input as independent variables (i.e., predictors) to estimate the dependent variable (i.e., response), i.e., FSC value. The resolution of the generated FSC maps is 500 m. The results indicate that the ANN, MARS, RF and SVR models exhibit high consistency with reference FSC values as indicated by low RMSE (~0.14) and high R (~0.93) values. In order to analyze the effect of using three auxiliary variables, i.e., NDSI, NDVI and land cover class, to the predictive ability of the models; ANN, MARS, RF and SVR models are also trained without these predictor variables, i.e., by only using MODIS bands 1–7. The models trained without three auxiliary variables slightly differ from the ones trained with the full set of predictors by only resulting in a mean decrease in R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助30
1秒前
2秒前
4秒前
8秒前
10秒前
野草完成签到,获得积分10
12秒前
14秒前
14秒前
15秒前
15秒前
高兴海燕发布了新的文献求助10
16秒前
super chan完成签到,获得积分10
19秒前
强健的语梦完成签到,获得积分10
20秒前
奇奇吃面发布了新的文献求助10
20秒前
21秒前
无聊的翠芙完成签到,获得积分10
21秒前
梦璃完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
liyi发布了新的文献求助10
23秒前
27秒前
30秒前
31秒前
碗碗豆喵完成签到 ,获得积分10
32秒前
105400155完成签到,获得积分10
33秒前
白樱恋曲发布了新的文献求助10
34秒前
veen完成签到 ,获得积分10
35秒前
运气贼好的熊猫完成签到 ,获得积分10
37秒前
liyi完成签到,获得积分10
37秒前
39秒前
英勇的书包完成签到,获得积分20
40秒前
蜡笔小新发布了新的文献求助10
40秒前
珍妮发布了新的文献求助10
40秒前
obaica完成签到,获得积分10
41秒前
41秒前
W29完成签到,获得积分10
42秒前
NuLi完成签到 ,获得积分10
44秒前
顺利毕业发布了新的文献求助10
46秒前
充电宝应助英勇的书包采纳,获得10
51秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137627
求助须知:如何正确求助?哪些是违规求助? 2788531
关于积分的说明 7787471
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300119
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023