Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression

随机森林 遥感 支持向量机 反射率 积雪 回归 环境科学 估计 森林覆盖 回归分析 封面(代数) 地质学 计算机科学 统计 气象学 人工智能 地理 机器学习 数学 生态学 物理 工程类 机械工程 管理 光学 经济 生物
作者
Semih Kuter
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:255: 112294-112294 被引量:35
标识
DOI:10.1016/j.rse.2021.112294
摘要

Abstract This study; i) investigates the suitability of two frequently employed machine learning algorithms in remote sensing, namely, random forests (RFs) and support vector regression (SVR) for fractional snow cover (FSC) estimation from MODIS Terra data, and ii) compares them with the previously proposed artificial neural networks (ANNs) and multivariate adaptive regression splines (MARS) methods over an heterogeneous and complex alpine terrain. The dataset comprises 20 Landsat 8 – MODIS image pairs that belong to European Alps acquired from Apr 2013 to Dec 2016. The fifteen image pairs are used to generate the training dataset necessary to build the models, whereas the remaining five are employed as a separate test dataset. The reference FSC maps are derived from the binary classified Landsat 8 snow/no snow maps at 30 m resolution. In order to assess the effect of sampling type and sample size, nine different training datasets are generated. The RF and SVR models are trained accordingly by using various settings of model tuning parameters. During the training of the models, MODIS top-of-atmosphere reflectance values of bands 1–7, NDSI, NDVI and land cover class are input as independent variables (i.e., predictors) to estimate the dependent variable (i.e., response), i.e., FSC value. The resolution of the generated FSC maps is 500 m. The results indicate that the ANN, MARS, RF and SVR models exhibit high consistency with reference FSC values as indicated by low RMSE (~0.14) and high R (~0.93) values. In order to analyze the effect of using three auxiliary variables, i.e., NDSI, NDVI and land cover class, to the predictive ability of the models; ANN, MARS, RF and SVR models are also trained without these predictor variables, i.e., by only using MODIS bands 1–7. The models trained without three auxiliary variables slightly differ from the ones trained with the full set of predictors by only resulting in a mean decrease in R

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
nichen发布了新的文献求助10
1秒前
1秒前
1秒前
zyc8368完成签到,获得积分10
1秒前
Allen发布了新的文献求助10
1秒前
好好好完成签到 ,获得积分10
2秒前
Yolanda发布了新的文献求助30
2秒前
TIANRU完成签到,获得积分20
3秒前
科研通AI6应助早安采纳,获得10
3秒前
鲤鱼山人发布了新的文献求助10
4秒前
4秒前
yznfly应助zy采纳,获得20
4秒前
梁子完成签到,获得积分10
5秒前
Jasmine发布了新的文献求助10
5秒前
LZH完成签到,获得积分10
5秒前
5秒前
ttx发布了新的文献求助10
5秒前
炙热念双完成签到,获得积分10
6秒前
mmddlj完成签到 ,获得积分10
6秒前
诗酒完成签到,获得积分10
7秒前
ray发布了新的文献求助10
7秒前
烟花应助静心养性采纳,获得10
7秒前
所所应助xiaoyezi123采纳,获得10
8秒前
Yolanda完成签到,获得积分10
8秒前
8秒前
共享精神应助王一采纳,获得30
8秒前
Allen完成签到,获得积分10
9秒前
Taniiyn完成签到,获得积分10
9秒前
风趣的苑博完成签到,获得积分10
9秒前
9秒前
无心的慕青完成签到,获得积分10
10秒前
10秒前
Rascal完成签到,获得积分10
10秒前
科研通AI6应助结实幼枫采纳,获得10
11秒前
nichen完成签到,获得积分20
12秒前
秋丶凡尘完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
莘莘完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716