Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression

随机森林 遥感 支持向量机 反射率 积雪 回归 环境科学 估计 森林覆盖 回归分析 封面(代数) 地质学 计算机科学 统计 气象学 人工智能 地理 机器学习 数学 生态学 经济 管理 工程类 物理 光学 生物 机械工程
作者
Semih Kuter
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:255: 112294-112294 被引量:35
标识
DOI:10.1016/j.rse.2021.112294
摘要

Abstract This study; i) investigates the suitability of two frequently employed machine learning algorithms in remote sensing, namely, random forests (RFs) and support vector regression (SVR) for fractional snow cover (FSC) estimation from MODIS Terra data, and ii) compares them with the previously proposed artificial neural networks (ANNs) and multivariate adaptive regression splines (MARS) methods over an heterogeneous and complex alpine terrain. The dataset comprises 20 Landsat 8 – MODIS image pairs that belong to European Alps acquired from Apr 2013 to Dec 2016. The fifteen image pairs are used to generate the training dataset necessary to build the models, whereas the remaining five are employed as a separate test dataset. The reference FSC maps are derived from the binary classified Landsat 8 snow/no snow maps at 30 m resolution. In order to assess the effect of sampling type and sample size, nine different training datasets are generated. The RF and SVR models are trained accordingly by using various settings of model tuning parameters. During the training of the models, MODIS top-of-atmosphere reflectance values of bands 1–7, NDSI, NDVI and land cover class are input as independent variables (i.e., predictors) to estimate the dependent variable (i.e., response), i.e., FSC value. The resolution of the generated FSC maps is 500 m. The results indicate that the ANN, MARS, RF and SVR models exhibit high consistency with reference FSC values as indicated by low RMSE (~0.14) and high R (~0.93) values. In order to analyze the effect of using three auxiliary variables, i.e., NDSI, NDVI and land cover class, to the predictive ability of the models; ANN, MARS, RF and SVR models are also trained without these predictor variables, i.e., by only using MODIS bands 1–7. The models trained without three auxiliary variables slightly differ from the ones trained with the full set of predictors by only resulting in a mean decrease in R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nanhe698发布了新的文献求助10
1秒前
Huang完成签到,获得积分10
1秒前
碳土不凡完成签到 ,获得积分10
2秒前
2秒前
淡淡采白发布了新的文献求助10
3秒前
3秒前
4秒前
Akim应助dingdong采纳,获得10
4秒前
4秒前
4秒前
satchzhao发布了新的文献求助10
4秒前
可爱的函函应助尺素寸心采纳,获得10
4秒前
66发布了新的文献求助10
5秒前
一鸣完成签到,获得积分10
5秒前
5秒前
ding应助呵呵呵呵采纳,获得10
5秒前
5秒前
汉堡包应助hkxfg采纳,获得10
7秒前
8秒前
sw完成签到,获得积分10
8秒前
没有神的过往完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
芋圆不圆完成签到,获得积分10
12秒前
招财不肥发布了新的文献求助10
13秒前
zxc111发布了新的文献求助10
13秒前
魔幻的从梦完成签到,获得积分10
13秒前
14秒前
Xiaoxiao应助sunyexuan采纳,获得10
15秒前
16秒前
17秒前
淼淼之锋完成签到 ,获得积分10
17秒前
赢赢完成签到 ,获得积分10
17秒前
18秒前
19秒前
科目三应助落落采纳,获得10
21秒前
67发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808