已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression

随机森林 遥感 支持向量机 反射率 积雪 回归 环境科学 估计 森林覆盖 回归分析 封面(代数) 地质学 计算机科学 统计 气象学 人工智能 地理 机器学习 数学 生态学 物理 工程类 机械工程 管理 光学 经济 生物
作者
Semih Kuter
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:255: 112294-112294 被引量:35
标识
DOI:10.1016/j.rse.2021.112294
摘要

Abstract This study; i) investigates the suitability of two frequently employed machine learning algorithms in remote sensing, namely, random forests (RFs) and support vector regression (SVR) for fractional snow cover (FSC) estimation from MODIS Terra data, and ii) compares them with the previously proposed artificial neural networks (ANNs) and multivariate adaptive regression splines (MARS) methods over an heterogeneous and complex alpine terrain. The dataset comprises 20 Landsat 8 – MODIS image pairs that belong to European Alps acquired from Apr 2013 to Dec 2016. The fifteen image pairs are used to generate the training dataset necessary to build the models, whereas the remaining five are employed as a separate test dataset. The reference FSC maps are derived from the binary classified Landsat 8 snow/no snow maps at 30 m resolution. In order to assess the effect of sampling type and sample size, nine different training datasets are generated. The RF and SVR models are trained accordingly by using various settings of model tuning parameters. During the training of the models, MODIS top-of-atmosphere reflectance values of bands 1–7, NDSI, NDVI and land cover class are input as independent variables (i.e., predictors) to estimate the dependent variable (i.e., response), i.e., FSC value. The resolution of the generated FSC maps is 500 m. The results indicate that the ANN, MARS, RF and SVR models exhibit high consistency with reference FSC values as indicated by low RMSE (~0.14) and high R (~0.93) values. In order to analyze the effect of using three auxiliary variables, i.e., NDSI, NDVI and land cover class, to the predictive ability of the models; ANN, MARS, RF and SVR models are also trained without these predictor variables, i.e., by only using MODIS bands 1–7. The models trained without three auxiliary variables slightly differ from the ones trained with the full set of predictors by only resulting in a mean decrease in R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助小六采纳,获得10
2秒前
3秒前
canjian1943发布了新的文献求助10
3秒前
枕边人完成签到 ,获得积分10
4秒前
英姑应助JHY采纳,获得10
4秒前
孙燕应助hyhyhyhy采纳,获得10
6秒前
ddli发布了新的文献求助10
9秒前
称心的战斗机完成签到,获得积分10
11秒前
13秒前
徐徐图之完成签到 ,获得积分10
15秒前
16秒前
恒123完成签到,获得积分10
16秒前
尛诺发布了新的文献求助10
17秒前
blue完成签到,获得积分10
17秒前
19秒前
canjian1943完成签到,获得积分10
22秒前
JHY发布了新的文献求助10
23秒前
23秒前
23秒前
23秒前
打打应助虚心傲丝采纳,获得30
25秒前
canjian1943发布了新的文献求助10
25秒前
25秒前
纸包鱼发布了新的文献求助10
26秒前
molo发布了新的文献求助10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
27秒前
星辰大海应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得30
27秒前
Profeto应助科研通管家采纳,获得10
28秒前
MchemG应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
28秒前
28秒前
28秒前
Rondab应助明昼采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994236
求助须知:如何正确求助?哪些是违规求助? 3534710
关于积分的说明 11266276
捐赠科研通 3274624
什么是DOI,文献DOI怎么找? 1806413
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809731