Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression

随机森林 遥感 支持向量机 反射率 积雪 回归 环境科学 估计 森林覆盖 回归分析 封面(代数) 地质学 计算机科学 统计 气象学 人工智能 地理 机器学习 数学 生态学 物理 工程类 机械工程 管理 光学 经济 生物
作者
Semih Kuter
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:255: 112294-112294 被引量:35
标识
DOI:10.1016/j.rse.2021.112294
摘要

Abstract This study; i) investigates the suitability of two frequently employed machine learning algorithms in remote sensing, namely, random forests (RFs) and support vector regression (SVR) for fractional snow cover (FSC) estimation from MODIS Terra data, and ii) compares them with the previously proposed artificial neural networks (ANNs) and multivariate adaptive regression splines (MARS) methods over an heterogeneous and complex alpine terrain. The dataset comprises 20 Landsat 8 – MODIS image pairs that belong to European Alps acquired from Apr 2013 to Dec 2016. The fifteen image pairs are used to generate the training dataset necessary to build the models, whereas the remaining five are employed as a separate test dataset. The reference FSC maps are derived from the binary classified Landsat 8 snow/no snow maps at 30 m resolution. In order to assess the effect of sampling type and sample size, nine different training datasets are generated. The RF and SVR models are trained accordingly by using various settings of model tuning parameters. During the training of the models, MODIS top-of-atmosphere reflectance values of bands 1–7, NDSI, NDVI and land cover class are input as independent variables (i.e., predictors) to estimate the dependent variable (i.e., response), i.e., FSC value. The resolution of the generated FSC maps is 500 m. The results indicate that the ANN, MARS, RF and SVR models exhibit high consistency with reference FSC values as indicated by low RMSE (~0.14) and high R (~0.93) values. In order to analyze the effect of using three auxiliary variables, i.e., NDSI, NDVI and land cover class, to the predictive ability of the models; ANN, MARS, RF and SVR models are also trained without these predictor variables, i.e., by only using MODIS bands 1–7. The models trained without three auxiliary variables slightly differ from the ones trained with the full set of predictors by only resulting in a mean decrease in R

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖静柏完成签到,获得积分20
刚刚
刚刚
科研通AI6应助myt采纳,获得10
刚刚
zhanng发布了新的文献求助10
1秒前
奇遇里发布了新的文献求助10
1秒前
李健的小迷弟应助承乐采纳,获得30
2秒前
小马甲应助Jian采纳,获得10
2秒前
卢秋宇完成签到,获得积分20
3秒前
叶子完成签到,获得积分10
3秒前
瞿琼瑶发布了新的文献求助80
4秒前
4秒前
苦苦发布了新的文献求助10
4秒前
4秒前
5秒前
华仔应助多情以山采纳,获得10
5秒前
奔跑西木发布了新的文献求助10
5秒前
5秒前
雨天有伞完成签到,获得积分10
6秒前
ZOLEI完成签到,获得积分10
6秒前
7秒前
超级万声发布了新的文献求助30
7秒前
执着蓝发布了新的文献求助10
7秒前
迷路巧曼完成签到,获得积分20
8秒前
害羞鬼发布了新的文献求助10
9秒前
9秒前
Giannis完成签到,获得积分20
10秒前
超级翠完成签到,获得积分10
10秒前
hzl发布了新的文献求助10
10秒前
10秒前
Aprilapple发布了新的文献求助10
10秒前
嘎嘎发布了新的文献求助20
11秒前
Echo_枕星完成签到 ,获得积分10
11秒前
直率路人完成签到,获得积分10
11秒前
11秒前
12秒前
王宽宽宽发布了新的文献求助10
12秒前
ko1完成签到 ,获得积分10
12秒前
西西发布了新的文献求助10
12秒前
奶油果泥完成签到,获得积分10
13秒前
Akim应助苦苦采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836